Echo-Power is an open-source AI-powered detection system for identifying abnormal voltage conditions in miniature constant-voltage transformers used in medical devices, especially for low-resource environments.
Developed with real-time 1D-CNN model inference optimized for Raspberry Pi CM4, STM32, and ESP32.
echo-power/
├── echo_power/ # Python package
│ ├── detector.py # TFLite model loader and inference
│ ├── preprocessor.py # Signal normalization
│ ├── relay_control.py # GPIO relay activation
│ ├── config.yaml # Threshold configuration
│ └── example_run.py # End-to-end inference demo
├── hardware/
│ ├── Echo-Power_Hardware_Design_Guide.docx # Full schematic
│ ├── echo_power_hardware_schematic.png # PCB layout
│ └── Echo-Power_BOM_List.xlsx # Bill of materials
├── LICENSE
└── README.md
- Clone this repository:
git clone https://github.com/ykkims99/echo-power.git
cd echo-power-
Prepare Raspberry Pi GPIO and copy your TFLite model to
model/echo_power.tflite. -
Run demo:
python3 echo_power/example_run.py- Input: Normalized voltage & current sequences (1000 samples)
- Output: Anomaly classification probabilities (e.g., normal, surge, undervoltage)
- Size: < 128KB TFLite
- Latency: ~20ms on CM4
This project is licensed under the MIT License.
Kim, Y.K. (2025). Echo-Power: AI-Assisted Voltage Abnormality Detection for Medical Transformers. In submission to Scientific African.
Maintained with ❤️ by @ykkims99