Skip to content

yash3056/notesmaker

Repository files navigation

AI Notes Maker - Multi-Agent Note Taking System

A modular, multi-agent system for generating comprehensive notes on any topic using AI. The system uses specialized agents to plan research, retrieve relevant content, and synthesize high-quality notes.

🚀 Features

  • Multi-Agent Architecture: Specialized agents for planning, retrieval, and synthesis
  • Document Intelligence: Automatically processes PDF, TXT, MD, and DOCX files
  • Configurable Output: Customizable depth, audience, and format
  • Interactive & Batch Modes: CLI interface for both interactive and automated usage
  • Comprehensive Logging: Built-in recording and monitoring capabilities
  • Modular Design: Clean, maintainable codebase with proper separation of concerns

Architecture

The system consists of three main agents:

  1. Agent 1 (Planner): Strategic planning and orchestration
  2. Agent 2 (Synthesizer): Content synthesis and note writing
  3. Agent 3 (Retriever): Information retrieval using vector search

Installation

# Clone the repository
git clone https://github.com/yash3056/notesmaker.git
cd notesmaker

# Install dependencies
pip install -r requirements.txt

Quick Start

  1. Place your documents in the documents/ folder
  2. Run the system:
from src.main import create_notes

notes = await create_notes(
    topic="your topic here",
    requirements={
        "depth": "comprehensive",
        "include_examples": True,
        "format": "structured",
        "audience": "students"
    }
)

📁 Project Structure

notesmaker/
├── config/                 # Configuration management
│   ├── __init__.py
│   └── settings.py        # Dataclass-based configuration
├── src/                   # Main source code
│   ├── agents/           # Specialized AI agents
│   │   ├── __init__.py
│   │   ├── base_agent.py     # Abstract base agent
│   │   ├── planner.py        # Research planning agent
│   │   ├── retriever.py      # Content retrieval agent
│   │   └── synthesizer.py    # Note synthesis agent
│   ├── core/             # Core system components
│   │   ├── __init__.py
│   │   ├── data_structures.py # Core data models
│   │   ├── document_loader.py # Document processing
│   │   ├── llm_wrapper.py     # LLM abstraction layer
│   │   └── system.py          # Main system orchestration
│   └── utils/            # Utility functions
│       ├── __init__.py
│       ├── helpers.py        # Helper functions
│       └── recorder.py       # Logging and monitoring
├── tests/                # Test suite
│   ├── test_agents/
│   ├── test_core/
│   └── test_utils/
├── examples/             # Usage examples
│   ├── basic_usage.py
│   └── advanced_usage.py
├── backup_original/      # Original monolithic files
├── documents/            # Source documents directory
├── main.py              # Main entry point
├── setup.py             # Package installation
├── requirements.txt     # Dependencies
└── README.md           # This file

🛠️ Installation

1. Clone and Install Dependencies

git clone https://github.com/yash3056/notesmaker.git
cd notesmaker
pip install -r requirements.txt

2. Environment Setup

Copy the example environment file and configure your settings:

cp .env.example .env

Edit .env with your configuration:

  • Set your preferred LLM model
  • Configure API keys if using external services
  • Adjust system parameters

3. Install as Package (Optional)

pip install -e .

📖 Usage

Interactive Mode

python main.py --interactive

The system will prompt you for:

  • Topic for note generation
  • Depth level (basic/intermediate/comprehensive)
  • Target audience (students/professionals/general)
  • Whether to include examples

Batch Mode

python main.py --topic "Machine Learning" --depth comprehensive --audience students

Command Line Options

python main.py [options]

Options:
  --topic TOPIC                 Topic for note generation
  --depth LEVEL                 Depth: basic, intermediate, comprehensive
  --audience AUDIENCE           Target: students, professionals, general
  --examples / --no-examples    Include examples (default: yes)
  --interactive, -i             Run in interactive mode
  --model MODEL                 LLM model to use

📚 Adding Documents

Place your source documents in the documents/ directory. Supported formats:

  • Text files: .txt, .md
  • PDF files: .pdf (requires pypdf)
  • Word documents: .docx (requires python-docx)

The system will automatically:

  1. Scan the documents directory
  2. Load and process all supported files
  3. Build a searchable index
  4. Use relevant content during note generation

🧩 Architecture

Core Components

  • MultiAgentSystem: Main orchestrator that coordinates all agents
  • DocumentLoader: Handles loading and processing of various document formats
  • LLMWrapper: Provides abstraction layer for different language models
  • Data Structures: Type-safe models for messages, plans, and configurations

Agent System

  1. PlannerAgent: Analyzes the topic and creates a structured research plan
  2. RetrieverAgent: Searches documents and retrieves relevant content
  3. SynthesizerAgent: Combines research into comprehensive, well-formatted notes

🔧 Development

Running Tests

pytest tests/

Adding New Agents

  1. Create new agent file in src/agents/
  2. Inherit from BaseAgent
  3. Implement required methods
  4. Add to src/agents/__init__.py
  5. Register in the MultiAgentSystem

🔄 Migration from Monolithic Version

This project was refactored from two monolithic scripts (aI_agent_2.py and record.py) into a clean, modular architecture. The original files are preserved in backup_original/ for reference.

Key Improvements

  • Modular Design: Separated concerns into logical modules
  • Type Safety: Added comprehensive type hints and Pydantic models
  • Better Testing: Proper test structure with pytest
  • Configuration Management: Centralized, dataclass-based configuration
  • Package Structure: Proper Python package with setup.py
  • Enhanced Documentation: Comprehensive README and code documentation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages