Skip to content

xiawenwen49/Multi-Commander

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

153 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Commander

Multi-agent traffic signal control for DeeCamp2019

usage

Single agent for single intersection

Training

DQN

python run_rl_control.py --algo DQN --epoch 200 --num_step 2000 --phase_step 1

Double DQN

python run_rl_control.py --algo DDQN --epoch 200 --num_step 2000 --phase_step 1

Dueling DQN

python run_rl_control.py --algo DuelDQN --epoch 200 --num_step 2000 --phase_step 1

Inference

DQN

python run_rl_control.py --algo DQN --inference --num_step 3000 --ckpt model/DQN_20190803_150924/DQN-200.h5

DDQN

python run_rl_control.py --algo DDQN --inference --num_step 2000 --ckpt model/DDQN_20190801_085209/DDQN-100.h5

Dueling DQN

python run_rl_control.py --algo DuelDQN --inference --num_step 2000 --ckpt model/DuelDQN_20190730_165409/DuelDQN-ckpt-10

Simulation

. simulation.sh

open firefox with the url: http://localhost:8080/?roadnetFile=roadnet.json&logFile=replay.txt

Multiple intersections signal control

Training

QMIX (based on Ray)

python ray_multi_agent.py

MDQN (manul implementation)

python run_rl_multi_control.py --algo MDQN --epoch 1000 --num_step 500 --phase_step 10

MDQN (based on Ray)

python ray_multi_dqn.py

Inference

MDQN (manul implementation)

python run_rl_multi_control.py --algo MDQN --inference --num_step 1500 --phase_step 15 --ckpt model/XXXXXXX/MDQN-1.h5

MDQN (based on Ray) (in lab linux)

python ray_multi_dqn_rollout.py --run DQN --checkpoint ~/ray_results/DQN_cityflow_multi_2019-08-11_00-44-52khzt8bnq/checkpoint_400/checkpoint-400 --env cityflow_multi --steps 1000

Rule based

1*6 roadnet

Generate checkpoint

python run_rl_multi_control.py --algo MDQN --epoch 1 --num_step 1 --phase_step 10

Generate replay file

python run_rl_multi_control.py --algo MDQN --inference --num_step 130 --phase_step 30 --ckpt model/MDQN_20190809_134734/MDQN-1.h5

Simulation

. simulation.sh

open firefox with the url: http://localhost:8080/?roadnetFile=roadnet.json&logFile=replay.txt

Installation

Ciryflow deecamp branch

git clone -b deecamp https://github.com/zhc134/CityFlow.git
pip install .

About

DQN/variants for signal control

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published