- pytorch 1.1+
- torchvision 0.3+
- pyclipper
- opencv3
- gcc 4.9+
train: prepare a text in the following format, use '\t' as a separator
/path/to/img.jpg path/to/label.txt
...val: use a folder
img/ store img
gt/ store gt file- config the
train_data_path,val_data_pathin config.json - use following script to run
python3 train.pyeval.py is used to test model on test dataset
- config
model_path,img_path,gt_path,save_pathin eval.py - use following script to test
python3 eval.pypredict.py is used to inference on single image
- config
model_path,img_path, in predict.py - use following script to predict
python3 predict.pyThe project is still under development.
only train on ICDAR2015 dataset
| Method | image size (short size) | learning rate | Precision (%) | Recall (%) | F-measure (%) | FPS |
|---|---|---|---|---|---|---|
| paper(resnet18) | 736 | x | x | x | 80.4 | 26.1 |
| my (resnet18+FPEM_FFM+pse扩张) | 736 | 1e-3 | 84.24 | 74.14 | 78.87 | 21.31 (P100) |
| my (resnet50+FPEM_FFM+pse扩张) | 736 | 1e-3 | 69.04 | 66.66 | 67.83 | 14.22 (P100) |
| my (resnet18+FPEM_FFM+pse扩张) | 736 | 1e-4 | 62.93 | 62.41 | 62.61 | 21.31 (P100) |
| my (resnet50+FPEM_FFM+pse扩张) | 736 | 1e-4 | 61.19 | 69.18 | 64.94 | 14.22 (P100) |
| my (resnet18+FPN+pse扩张) | 736 | 1e-3 | 76.50 | 74.70 | 75.59 | 14.47 (P100) |
| my (resnet50+FPN+pse扩张) | 736 | 1e-3 | 71.82 | 75.73 | 73.72 | 10.67 (P100) |
| my (resnet18+FPN+pse扩张) | 736 | 1e-4 | 74.19 | 72.34 | 73.25 | 14.47 (P100) |
| my (resnet50+FPN+pse扩张) | 736 | 1e-4 | 78.96 | 76.27 | 77.59 | 10.67 (P100) |
TBD
If this repository helps you,please star it. Thanks.
