Skip to content

univrs/learn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

37 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MetaLearn Vision

The Premise

MetaLearn is a platform for tools that help systems understand themselves.

We work at the boundaries between:

  • Specification and Implementation (DOL)
  • High-level and Low-level (LLVM)
  • Human Intent and Machine Execution (Skills)
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                                                         β”‚
β”‚                         METALEARN.ORG                                   β”‚
β”‚                                                                         β”‚
β”‚              "Tools for systems that know what they should be"          β”‚
β”‚                                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚                 β”‚          β”‚
β”‚  β”‚  dol.metalearn  β”‚  β”‚ llvm.metalearn  β”‚  β”‚skills.metalearn β”‚          β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚                 β”‚          β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚                 β”‚          β”‚
β”‚  β”‚  Design         β”‚  β”‚  Compilation    β”‚  β”‚  Composable     β”‚          β”‚
β”‚  β”‚  Ontology       β”‚  β”‚  & Translation  β”‚  β”‚  Capabilities   β”‚          β”‚
β”‚  β”‚  Language       β”‚  β”‚  Tools          β”‚  β”‚                 β”‚          β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚                 β”‚          β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚ 
β”‚           β”‚                    β”‚                    β”‚                   β”‚
β”‚           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β”‚
β”‚                                β”‚                                        β”‚
β”‚                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                            β”‚
β”‚                    β”‚                       β”‚                            β”‚
β”‚                    β”‚   metalearn.org       β”‚                            β”‚
β”‚                    β”‚   (Learning Hub)      β”‚                            β”‚
β”‚                    β”‚                       β”‚                            β”‚
β”‚                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                            β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

The Three Pillars

1. DOL (Design Ontology Language)

Site: https://dol.metalearn.org

Purpose: A specification language for systems that know what they should be.

Philosophy:

"Understanding outlives implementation."

DOL inverts traditional development:

  • Traditional: Code β†’ Tests β†’ Documentation
  • DOL: Ontology β†’ Tests β†’ Code
DOL answers: "What IS this system, fundamentally?"

Before DOL:                    With DOL:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Code (Rust)     β”‚           β”‚ Ontology (DOL)  β”‚  ← Stable meaning
β”‚ "How it works"  β”‚           β”‚ "What it IS"    β”‚
β”‚                 β”‚           β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Docs (if any)   β”‚           β”‚ Code (Rust)     β”‚  ← Implementation
β”‚ "What we think  β”‚           β”‚ "How it works"  β”‚
β”‚  it does"       β”‚           β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                 β”‚           β”‚ Tests           β”‚  ← Generated from spec
β”‚ Tests           β”‚           β”‚ "Verified"      β”‚
β”‚ "What we test"  β”‚           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Concepts:

  • Genes: Properties that define what something IS
  • Traits: Behaviors that define what something DOES
  • Constraints: Rules that must always hold
  • Systems: Compositions of genes, traits, constraints

Tools:

  • dol-parse: Validate DOL syntax
  • dol-check: Verify constraints
  • dol-test: Generate tests from specs

Standard Library:

  • physics.dol: Thermodynamics, causality, conservation
  • primitives.dol: Continuants, occurrents, relations
  • transformations.dol: State transitions, composition
  • information.dol: Encoding, channels, fidelity

2. LLVM Translation Tools

Site: https://llvm.metalearn.org

Purpose: Bridge high-level languages to low-level execution through LLVM IR.

Philosophy:

"Meet code where it is, take it where it needs to go."

LLVM Translation answers: "How do we get from HERE to THERE?"

                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚   Source Code   β”‚
                    β”‚  (C, Rust, Go)  β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚    LLVM IR      β”‚  ← Universal representation
                    β”‚  (Intermediate) β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                             β”‚
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚                    β”‚                    β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
β”‚    x86_64     β”‚   β”‚     ARM64       β”‚   β”‚     WASM      β”‚
β”‚   (Desktop)   β”‚   β”‚    (Mobile)     β”‚   β”‚   (Browser)   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Capabilities:

  • Translation: Between source languages via IR
  • Analysis: Understand code structure and semantics
  • Optimization: Transform for performance
  • Targeting: Emit for any supported architecture

Tools (from llvm-translation-mcp):

  • MCP server for LLVM operations
  • Claude integration for AI-assisted translation
  • Analysis pipelines for code understanding

3. Skills Framework

Site: https://skills.metalearn.org

Purpose: Composable, reusable capability modules for AI agents and systems.

Philosophy:

"Capabilities should be modular, discoverable, and composable."

Skills answer: "What CAN this system do?"

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         SKILL COMPOSITION                               β”‚
β”‚                                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                   β”‚
β”‚  β”‚    Skill    β”‚ + β”‚    Skill    β”‚ + β”‚    Skill    β”‚ = Complex         β”‚
β”‚  β”‚      A      β”‚   β”‚      B      β”‚   β”‚      C      β”‚   Capability      β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β”‚
β”‚                                                                         β”‚
β”‚  Example:                                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                   β”‚
β”‚  β”‚ CrossPlatformβ”‚ + β”‚  MathEngine β”‚ + β”‚  P2PNetwork β”‚ = Distributed    β”‚
β”‚  β”‚   Bridge    β”‚   β”‚ Integration β”‚   β”‚    Node     β”‚   Compute Node   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                   β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Existing Skills (from MyceliaNetwork):

  • CrossPlatformBridge: Abstract platform differences
  • MathEngineIntegration: Numerical computation
  • MyceliaNetworkNodeDeployer: P2P node deployment

Skill Structure:

Skills/
β”œβ”€β”€ CLAUDE.md           # How Claude uses these skills
β”œβ”€β”€ SkillName/
β”‚   β”œβ”€β”€ SKILL.md        # Skill specification (what it does)
β”‚   β”œβ”€β”€ src/            # Implementation
β”‚   β”œβ”€β”€ tests/          # Validation
β”‚   └── examples/       # Usage examples

Integration with DOL: Skills can be specified in DOL, then implemented:

system skill.cross_platform_bridge @ 0.1.0 {
  provides platform_abstraction
  provides file_system_access
  provides network_access
  
  works_on windows
  works_on macos
  works_on linux
}

How They Connect

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                                                         β”‚
β”‚                    THE METALEARN STACK                                  β”‚
β”‚                                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                      INTENT LAYER                                β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚   "I want a distributed system that processes images"           β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                               β”‚                                         β”‚
β”‚                               β–Ό                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    ONTOLOGY LAYER (DOL)                          β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚   system image_processor @ 0.1.0 {                              β”‚   β”‚
β”‚  β”‚     requires skill.distributed_compute                          β”‚   β”‚
β”‚  β”‚     requires skill.image_processing                             β”‚   β”‚
β”‚  β”‚     provides transformation.image_to_embedding                  β”‚   β”‚
β”‚  β”‚   }                                                              β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                               β”‚                                         β”‚
β”‚                               β–Ό                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    SKILLS LAYER                                  β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”‚   β”‚
β”‚  β”‚   β”‚ Distributed β”‚  β”‚   Image     β”‚  β”‚   P2P       β”‚             β”‚   β”‚
β”‚  β”‚   β”‚  Compute    β”‚  β”‚ Processing  β”‚  β”‚  Network    β”‚             β”‚   β”‚
β”‚  β”‚   β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜             β”‚   β”‚
β”‚  β”‚          β”‚                β”‚                β”‚                     β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚             β”‚                β”‚                β”‚                         β”‚
β”‚             β–Ό                β–Ό                β–Ό                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                  COMPILATION LAYER (LLVM)                        β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚   Rust β†’ LLVM IR β†’ {x86, ARM, WASM}                             β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                               β”‚                                         β”‚
β”‚                               β–Ό                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    EXECUTION LAYER                               β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚   Running on: Desktop, Server, Edge, Browser                    β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Site Architecture

metalearn.org (Hub)

metalearn.org/
β”œβ”€β”€ /                     # Landing page - what is MetaLearn?
β”œβ”€β”€ /tools               # Overview of all tools
β”œβ”€β”€ /philosophy          # Why we build this way
β”œβ”€β”€ /tutorials           # Cross-tool tutorials
└── /community           # Discord, GitHub, discussions

dol.metalearn.org

dol.metalearn.org/
β”œβ”€β”€ /                     # What is DOL?
β”œβ”€β”€ /learn               # Interactive tutorial
β”‚   β”œβ”€β”€ /genes           # Defining properties
β”‚   β”œβ”€β”€ /traits          # Defining behaviors
β”‚   β”œβ”€β”€ /constraints     # Defining rules
β”‚   └── /systems         # Composing all together
β”œβ”€β”€ /reference           # Language specification
β”‚   β”œβ”€β”€ /syntax          # Grammar and syntax
β”‚   β”œβ”€β”€ /stdlib          # Standard library docs
β”‚   └── /cli             # Tool documentation
β”œβ”€β”€ /examples            # Real-world examples
β”‚   β”œβ”€β”€ /univrs          # Univrs ontology examples
β”‚   └── /community       # Community contributions
β”œβ”€β”€ /playground          # Try DOL in browser
└── /install             # Get the tools

llvm.metalearn.org

llvm.metalearn.org/
β”œβ”€β”€ /                     # What is LLVM translation?
β”œβ”€β”€ /learn               # Tutorials
β”‚   β”œβ”€β”€ /ir              # Understanding LLVM IR
β”‚   β”œβ”€β”€ /translation     # Language-to-language
β”‚   └── /optimization    # Performance tuning
β”œβ”€β”€ /tools               # Tool documentation
β”‚   β”œβ”€β”€ /mcp-server      # MCP integration
β”‚   └── /claude-flow     # AI-assisted translation
β”œβ”€β”€ /examples            # Translation examples
└── /install             # Setup guide

skills.metalearn.org

skills.metalearn.org/
β”œβ”€β”€ /                     # What are Skills?
β”œβ”€β”€ /catalog             # Browse available skills
β”‚   β”œβ”€β”€ /compute         # Computation skills
β”‚   β”œβ”€β”€ /network         # Networking skills
β”‚   β”œβ”€β”€ /platform        # Platform abstraction
β”‚   └── /ai              # AI/ML skills
β”œβ”€β”€ /create              # How to create a skill
β”‚   β”œβ”€β”€ /structure       # Directory structure
β”‚   β”œβ”€β”€ /specification   # Writing SKILL.md
β”‚   β”œβ”€β”€ /testing         # Testing skills
β”‚   └── /publishing      # Sharing skills
β”œβ”€β”€ /compose             # Combining skills
└── /install             # Using skills

The Learning Path

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                                                         β”‚
β”‚                    METALEARN LEARNING JOURNEY                           β”‚
β”‚                                                                         β”‚
β”‚  BEGINNER                                                               β”‚
β”‚  β”œβ”€β”€ "What problem does MetaLearn solve?"                              β”‚
β”‚  β”œβ”€β”€ "How do specs relate to code?"                                    β”‚
β”‚  └── "Try the DOL playground"                                          β”‚
β”‚                                                                         β”‚
β”‚  INTERMEDIATE                                                           β”‚
β”‚  β”œβ”€β”€ "Write your first DOL spec"                                       β”‚
β”‚  β”œβ”€β”€ "Implement a spec in Rust"                                        β”‚
β”‚  β”œβ”€β”€ "Use a Skill in your project"                                     β”‚
β”‚  └── "Translate code with LLVM tools"                                  β”‚
β”‚                                                                         β”‚
β”‚  ADVANCED                                                               β”‚
β”‚  β”œβ”€β”€ "Design an ontology for a new domain"                             β”‚
β”‚  β”œβ”€β”€ "Create and publish a Skill"                                      β”‚
β”‚  β”œβ”€β”€ "Extend the DOL standard library"                                 β”‚
β”‚  └── "Contribute to MetaLearn tools"                                   β”‚
β”‚                                                                         β”‚
β”‚  EXPERT                                                                 β”‚
β”‚  β”œβ”€β”€ "Build a DOL-first development workflow"                          β”‚
β”‚  β”œβ”€β”€ "Integrate LLVM translation into CI/CD"                           β”‚
β”‚  └── "Design cross-cutting ontologies"                                 β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Why MetaLearn Matters

The Problem

Modern software development suffers from:

  1. Semantic Drift: Code diverges from its original intent
  2. Lost Knowledge: Why decisions were made is forgotten
  3. Brittle Integration: Systems don't compose well
  4. Platform Lock-in: Code tied to specific environments
  5. AI Opacity: AI can generate code but not understanding

The Solution

MetaLearn provides tools for:

  1. Semantic Stability: DOL specs preserve meaning
  2. Knowledge Capture: Ontology IS the documentation
  3. Clean Composition: Skills are designed to compose
  4. Platform Freedom: LLVM enables true portability
  5. AI Alignment: Specs guide AI generation

The Bet

We bet that:

Systems that understand themselves are more valuable than systems that merely function.

A system with a DOL spec:

  • Can explain what it is
  • Can verify it behaves correctly
  • Can evolve without losing identity
  • Can be understood by humans AND AI

Relationship to Univrs

Univrs is the proving ground for MetaLearn tools.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                                                                         β”‚
β”‚  UNIVRS ECOSYSTEM (Uses MetaLearn)                                     β”‚
β”‚                                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    RustOrchestration                             β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚  Ontology: scheduling.dol, reconciliation.dol, identity.dol     β”‚   β”‚
β”‚  β”‚  Skills: ContainerRuntime, Scheduling, P2PNetwork               β”‚   β”‚
β”‚  β”‚  LLVM: Rust β†’ native binaries                                   β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚                    mycelial-dashboard                            β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β”‚  Ontology: network.dol, economics.dol, reputation.dol           β”‚   β”‚
β”‚  β”‚  Skills: P2PNetwork, WebSocket, ReactDashboard                  β”‚   β”‚
β”‚  β”‚  LLVM: Rust β†’ native + WASM (browser nodes!)                    β”‚   β”‚
β”‚  β”‚                                                                  β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                         β”‚
β”‚  Univrs proves MetaLearn works.                                        β”‚
β”‚  MetaLearn is bigger than Univrs.                                      β”‚
β”‚                                                                         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Next Steps

Immediate (This Week)

  1. βœ… Complete DOL parser and tools (metadol)
  2. βœ… Validate on Univrs ontology
  3. πŸ”„ Create univrs-identity crate
  4. πŸ”„ Create univrs-state crate
  5. πŸ“‹ Reorganize repos (DOL specs to their projects)

Short-term (This Month)

  1. Create dol.metalearn.org landing page
  2. Write "Getting Started with DOL" tutorial
  3. Document existing Skills
  4. Create Skills specification format

Medium-term (Q1)

  1. DOL playground (in-browser)
  2. LLVM translation tutorials
  3. Skills catalog
  4. Community contributions workflow

Long-term (2025)

  1. DOL language server (IDE integration)
  2. Skill marketplace
  3. Cross-project ontology sharing
  4. AI-native spec generation

The Vision Statement

MetaLearn builds tools that help systems understand themselves.

Through DOL, we give systems a language to describe what they are. Through LLVM tools, we enable systems to run anywhere. Through Skills, we make capabilities composable.

We believe the future of software is:

  • Specification-first: Know what you're building before you build
  • Ontology-grounded: Meaning is explicit, not implicit
  • Composable: Small pieces that combine cleanly
  • AI-native: Specs that guide both humans and machines

MetaLearn is where understanding meets execution.


"Systems that know what they should be can become what they need to be."

About

Tools that help systems understand themselves.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •