- Note for Backpropagation
- 세상의 (거의) 모든 머신러닝 문제 공략법
- 쉽게쓰여진 MCMC
- Optimization: Stochastic Gradient Descent] [note]
- BackPropagation Through Time
- 딥러닝, NLP, 표현(Deep Learning, NLP, and Representations)
- woer2vec explained
- word2vec Parameter Learning Explained [note]
- Query2Vec: Learning Deep Intentions from Heterogenous Search Logs
- Search Retargeting using Directed Query Embeddings
- Distributed Representations of Sentences and Documents
- GloVe: Global Vectors for Word Representation
- Improving Word Representations via Global Context and Multiple Word Prototypes
- Bag of Tricks for Efficient Text Classification pdf note
- 콘볼루션 넷: 모듈 관점 (Conv Nets: A Modular Perspective)
- IMPLEMENTING A CNN FOR TEXT CLASSIFICATION IN TENSORFLOW (한글 번역)
- 자연어 처리 문제를 해결하는 CONVOLUTIONAL NEURAL NETWORKS 이해하기
- CS231n: Convolutional Neural Networks for Visual Recognition
- CONNECTING IMAGES AND NATURAL LANGUAGE
- Recurrent Neural Network (RNN) Tutorial - Part 1
- RNN Tutorial Part 2 - Python, NumPy와 Theano로 RNN 구현하기[note]
- RNN Tutorial Part 3 - BPTT와 Vanishing Gradient 문제
- Recurrent neural network based language model
- EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGE MODEL
- The Unreasonable Effectiveness of Recurrent Neural Networks
- 한글번역
- RNNS IN TENSORFLOW, A PRACTICAL GUIDE AND UNDOCUMENTED FEATURES
- Understanding LSTM Networks
- Deeplearning4j 소개
- Deeplearning4j 퀵스타트 가이드
- 아이겐벡터, 공분산, 주성분분석(PCA), 엔트로피의 기초
- 심층 신경망 (딥 뉴럴넷) 소개
- 컨볼루션 신경망(뉴럴 네트워크)
- LSTM 자세한 튜토리알!
- Deeplearning4j의 RNN 모델 사용방법
- 자연어처리 : word2vec
- 제한 볼츠만 머신 초보자 메뉴얼
- 딥 오토인코더