Pure Go implementation of Hugging Face-style transformers.
Python (transformers.js-like usage):
from transformers import pipeline
generator = pipeline("text-generation", model="onnx-community/SmolLM2-135M-ONNX")
out = generator("What is the third planet in our solar system and who inhabits it?", max_new_tokens=32)
print(out[0]["generated_text"])Go (this repo):
package main
import (
"fmt"
"log"
. "github.com/scriptmaster/hf_transformers_go/transformers"
)
var pipeline = Pipeline
func main() {
generator, err := pipeline(
"text-generation",
"onnx-community/SmolLM2-135M-ONNX",
map[string]any{"dtype": "q4"},
)
if err != nil {
log.Println(err)
return
}
out, err := generator([]ChatMessage{
{Role: RoleUser, Content: "What is the third planet in our solar system and who inhabits it?"},
}, map[string]any{"max_new_tokens": 32})
if err != nil {
log.Println(err)
return
}
fmt.Println(out[0]["generated_text"])
}Notes:
- We auto-download
config.json,tokenizer.json, ONNX weights (and.onnx_data), and optional tokenizer assets into./models/huggingface.co/<MODEL_ID>/resolve/main/(orCACHE_DIRif set). generation_config.jsonis parsed (if present) for eos/bos/pad IDs and default stop strings; you can also passstopin call options.MODEL_FILESenv can override optional asset list (comma-separated).