Skip to content

sameer9j/Genre_classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Music Genre Prediction System using Audio and Lyrics Ensemble Models

Purpose: To create a model, which automatically predicts the genre of any new music developed by a user. An ideal use case would be - song streaming websites using the system to easily identify song genres for unlabelled songs.

Techniques used: SVM, KNN, Logistic Regression, Random Forest, Gradient Boosting, Multilayer Perceptron

Tools Used: Jupyter Notebook, Python

Overview of each code:

  1. audio_analysis/Audio EDA v0.1ss.ipynb: The code contains:
  • Exploratory audio data analysis
  1. audio_analysis/Audio Models+Ensemble v0.1ss.ipynb:
  • Audio Modeling - QDA, Logistic, SVM

  • Ensemble models

  1. Text Modeling (5000 words, 1000 word) - text_analysis/final_text_analysis.ipynb The code contains:
  • Text Modeling - Random Forest, Gradient Boosting, Multilayer Perceptron

  • Ensemble Model

  1. Text EDA - data_eda/word_cloud.ipynb

  2. Ensemble Boosting.ipynb: The code contains:

  • Boosting for ensemble
  1. LyricBagofWordsClassifier.ipynb This code contains:
  • Text modeling (500 word) - Random Forest, SVM, KNN, Logistic Regression

Datasets Used:

  1. Genre Annotations: http://www.tagtraum.com/msd_genre_datasets.html (File name: msd_tagtraum_cd2c.cls.zip)

  2. Audio Dataset: https://labrosa.ee.columbia.edu/millionsong/tasteprofile

  3. Lyrics Dataset: https://labrosa.ee.columbia.edu/millionsong/musixmatch

About

Music Genre Prediction System using Audio and Lyrics Analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published