Skip to content

newvoid7/dprp

Repository files navigation

Deep Prior Rendering Probes (DPRP)

A framework to accomplish the pre- and intra- operative view fusion (PIVF) in augmented reality laparoscopic partial nephrectomy (AR-LPN). It uses rendering probes to store the information of the preoperative 3D model from different viewpoints, trains a deep neural network (ProFEN) to distinguish 2D render results from different viewpoints, and exploits prior knowledge to select the best matching probe from a restricted area.

Data prepare

The dataset directory should be like the following:

─ 2d3d_dataset
    ├─ .mask (the masks in the intraoperative views)
    │   ├─ mask1.png
    │   └─ ...
    ├─ restrictions.json (speicifies the prior-knowledge restricted area of each type)
    ├─ case 0 
    │   ├─ label (for evaluation)
    │   │   ├─ 00001.png
    │   │   └─ ...
    │   ├─ orig.nii.gz (preoperative view, segmented ct volume)
    │   ├─ clip.mp4 (intraoperative view, laparoscopic video)
    │   ├─ prior.json (specifies which type this case belongs to)
    │   ├─ ** mesh.gltf (will be generated by `prepare_dataset.py`) **
    │   ├─ ** 00001.png (will be generated by `prepare_dataset.py`) **
    │   └─ ...
    └─ ...

or specify each file or directory name in paths.py.

Quick run

bash ./fast_run.sh

This command will do following steps:

  1. Install the dependencies.
  2. Prepare the dataset. Run prepare_dataset.py to generate conitnuous image sequences and 3d models.
  3. Generate probes. Run probe.py to generate probes surrounding the 3D mesh model.
  4. Train the model. Run trian.py to train the ProFEN and the TrackNet.
  5. Do the fusion. Run fusion.py to do the fuse.

Example

Case1.

case1.mp4

Case4.

case4.mp4

About

Deep Prior Rendering Probes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published