Skip to content

mudgelee/DCGAN-tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCGAN in Tensorflow

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

alt tag

To avoid the fast convergence of D (discriminator) network, G (generatior) network is updatesd twice for each D network update which is a different from original paper.

Prerequisites

Usage

First, download dataset with:

$ mkdir data
$ python download.py --datasets celebA

To train a model with celebA dataset:

$ python main.py --dataset celebA --is_train True

To test with a existing model:

$ python main.py --dataset celebA

Or, you can use your own dataset by:

$ mkdir data/DATASET_NAME
... add images to data/DATASET_NAME ...
$ python main.py --dataset DATASET_NAME --is_train True
$ python main.py --dataset DATASET_NAME

Results

result

After 6th epoch:

result3

(in progress)

Author

Taehoon Kim / @carpedm20

About

A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%