Skip to content

juschan/CITREP-Tensorflow-Python

 
 

Repository files navigation

Deep Learning with Tensorflow and Python (CITREP+)

These are the exercise files used for Deep Learning with Tensorflow and Python (CITREP+) course.

The course outline can be found in

https://www.tertiarycourses.com.sg/deep-learning-with-tensorflow-and-python-citrep.html

Day 1
Module 1 Basic Python

Topic 1.1 Get Started with Python

  • Overview
  • Install Python
  • Install Sublime Text & PyCharm
  • First Python Script
  • Comment

Topic 1.2 Data Types

  • Number 
  • String 
  • List
  • Tuple
  • Dictionary
  • Set

Topic 1.3 Operators

  • Arithmetic Operators
  • Compound Operators
  • Comparison Operators
  • Membership Operators
  • Logical Operators
  • Identity Operators

Topic 1.4 Control Structure

  • Conditional
  • Loop
  • Iterating Over Multiple Sequences
  • Break & Continue
  • Loop with Else

Topic 1.5 Function

  • Function Syntax
  • Return Single Value
  • Return Multiple Values
  • Passing Arguments
  • Default Arguments
  • Variable Arguments
  • Decorator
  • Lambda, Map, Filter

Topic 1.6 Modules & Packages

  • Modules
  • Packages
  • Python Standard Libraries
  • Install Third Party Packages
  • Anaconda Packages

Day 2
Module 2 Advanced Python

Topic 2.1 Comprehensions & Generators

  • Comprehension Syntax
  • Types of Comprehension
  • Generator Syntax
  • Types of Generators

Topic 2.2 File and Directory Handling

  • Read and Write Data to Files
  • Manage File and Folders with Python OS Module
  • Manage Paths with Python Pathlib Module

Topic 2.3 Object Oriented Programming

  • Introduction to Object Oriented Programming
  • Create Class and Objects
  • Method and Overloading
  • Initializer & Destructor
  • Inheritance
  • Polymorphism

Topic 2.4 Database

  • Setup SQLite3 database
  • Apply CRUD operations on SQLite3
  • Integrate to external databases

Topic 2.5 Error Handling Using Exception

  • Exceptions versus Syntax Errors
  • Handle Exceptions with Try and Except blocks
  • The Else clause
  • Clean up with Finally

Topic 2.6 Intro to Useful Packages

  • Numpy
  • Matplotlib
  • Pandas

Python Assessment

Day 3
Module 3 Basic Tensorflow

Topic 3.1 Overview of Machine Learning & Tensorflow

  • Overview of Machine Learning and Deep Learning
  • Introduction to Tensorflow 2.x
  • Install Tensorflow 2.x

Topic 3.2 Basic Tensorflow Operations

  • Basic Tensor Data Types
  • Constant, Variable & Gradient
  • Matrix Operations
  • Eagle Mode vs Graph Mode

Topic 3.3 Datasets

  • MNIST Handwritten Digits and Fashion Datasets
  • CIFAR Image Dataset
  • IMDB Text Dataset

Topic 3.4 Neural Network for Regression

  • Introduction to Neural Network (NN)
  • Activation Function
  • Loss Function and Optimizer
  • Machine Learning Methodology
  • Build a NN Predictive Regression Model
  • Load and Save Model

Topic 3.5 Neural Network for Classification

  • Softmax
  • Cross Entropy Loss Function
  • Build a NN Classification Model

Day 4
Module 4 Advanced Tensorflow

Topic 4.1 Convolutional Neural Network (CNN)

  • Introduction to Convolutional Neural Network (CNN)
  • Convolution & Pooling
  • Build a CNN Model for Image Recognition
  • Overfitting and Underfitting Issues
  • Methods to Solve Overfitting
  • Small Dataset Overfitting Issue
  • Data Augmentation & Dropout

Topic 4.2 Recurrent Neural Network (RNN)

  • Introduction to Recurrent Neural Network (RNN)
  • Types of RNN Architectures
  • LSTM and GRU
  • Word Embedding
  • Build a RNN Model for Text Classification

Topic 4.3 Transfer Learning & Tensorflow Hub

  • Introduction to Transfer Learning
  • Pre-trained Models
  • Tensorflow Hub
  • Transfer Learning for Feature Extraction & Fine Tuning

Tensorflow Assessment

About

Exercise files for Deep Learning with Tensorflow and Python (CITREP+)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%