Leveraging Geoscience Data and Machine Learning to Discover Concealed Mineral Deposits
- Project Overview
- Key Features
- Directory Structure
- Setup Instructions
- Methodology
- Results
- Deliverables
- Future Work
Objective: Identify concealed mineral deposits (Au, Cu, PGEs) in a 39,000 sq. km area using AI/ML.
Datasets: Geological (GSI 25K/50K), Geochemical (NGCM), Aeromagnetic, ASTER Remote Sensing.
Tech Stack: Python, Scikit-learn, XGBoost, GeoPandas, Rasterio, SHAP.
- Automated Data Pipeline: Integration of multi-source geoscience data.
- Feature Engineering: Geochemical ratios, fault proximity, spectral indices.
- Explainable AI: SHAP values for model transparency.
- 3D-Ready Outputs: Predictive maps compatible with QGIS/ArcGIS.
project-root/
├── datasets/ # Raw geoscience data from GSI
├── final_datasets/ # Processed CSVs/shapefiles
├── images/ # Visualizations (EDA, results)
├── notebooks/ # Jupyter notebooks (EDA → Modeling)
└── venv/ # Conda environmentconda create -p ./venv python=3.12 -y
conda activate ./venv
pip install -r requirements.txtpython -m venv venv
source venv/bin/activate # Linux/Mac | venv\Scripts\activate on Windows
pip install -r requirements.txtgeopandas, rasterio, scikit-learn, xgboost, shap, matplotlib, seaborn
- Geochemical Data: Log-transformed skewed elements (Cu, Au).

- Spatial Alignment: Reprojected all layers to UTM Zone 43N.

| Feature Type | Example | Significance |
|---|---|---|
| Geochemical Ratios | Cu/Zn, Ni/Cr |
Indicator of mineralization |
| Structural Proximity | Distance to Faults |
Controls fluid pathways |
| Spectral Indices | Clay/Silica Ratio |
Hydrothermal alteration |
- Algorithms: Random Forest (AUC: 0.89) vs. XGBoost (AUC: 0.91).
- Validation: 78% of high-probability points matched GSI’s known blocks.
- Hotspots: 12 new target zones identified.
- Top Predictors:
Cu_ppm,Magnetic_Anomaly,Clay_Index.
Gravity inversion for depth estimates:
# Pseudocode: SimPEG inversion
survey = gravity.survey.Survey(...)
model = gravity.Inversion.run(...)- Code: GitHub Repo (Notebooks + scripts).
- Reports:
- Technical Report (PDF).
- Presentation Slides.
- GIS Outputs:
final_prospectivity_map.shp(QGIS/ArcGIS).mineral_probability_map.csv.
- Borehole Integration: Calibrate depth models with drill data.
- Web App: Deploy with
Streamlitfor interactive exploration. - Multi-Model Ensemble: Improve robustness with hybrid ML approaches.
🌟 Hackathon Submission by Team GeoSurfers
Powered by Python and Open Geoscience Data




