docker pull gouchicao/efficientdet:latestsudo docker run --runtime=nvidia -it gouchicao/efficientdet:latest bash- 选择生成的 class
nano dataset_custom/create_pascal_tfrecord.py
# 注释或者删除变量 pascal_label_map_dict 中不需要的项。
pascal_label_map_dict = {
'background': 0,
'aeroplane': 1,
'bicycle': 2,
# 'bird': 3,
# 'boat': 4,
# 'bottle': 5,
# 'bus': 6,
# 'car': 7,
# 'cat': 8,
# 'chair': 9,
# 'cow': 10,
# 'diningtable': 11,
# 'dog': 12,
# 'horse': 13,
# 'motorbike': 14,
# 'person': 15,
# 'pottedplant': 16,
# 'sheep': 17,
# 'sofa': 18,
# 'train': 19,
# 'tvmonitor': 20,
}- 生成 tfrecord
mkdir tfrecord
PYTHONPATH=".:$PYTHONPATH" python dataset_custom/create_pascal_tfrecord.py \
--data_dir=/VOCtrainval_11-May-2012/VOCdevkit --year=VOC2012 --output_path=tfrecord/pascal
I0826 17:26:40.648776 140644300003136 create_pascal_tfrecord.py:239] writing to output path: tfrecord/pascal
I0826 17:26:40.651618 140644300003136 create_pascal_tfrecord.py:265] Reading from PASCAL VOC2012 dataset.
I0826 17:26:40.675092 140644300003136 create_pascal_tfrecord.py:277] On image 0 of 595
I0826 17:26:40.751746 140644300003136 create_pascal_tfrecord.py:277] On image 100 of 595
I0826 17:26:40.825970 140644300003136 create_pascal_tfrecord.py:277] On image 200 of 595
I0826 17:26:40.899290 140644300003136 create_pascal_tfrecord.py:277] On image 300 of 595
I0826 17:26:40.969913 140644300003136 create_pascal_tfrecord.py:277] On image 400 of 595
I0826 17:26:41.041234 140644300003136 create_pascal_tfrecord.py:277] On image 500 of 595MODEL='efficientdet-d1'num_classes: 3
var_freeze_expr: '(efficientnet|fpn_cells|resample_p6)'
label_map: {1: aeroplane, 2: bicycle}
learning_rate: 0.002
lr_warmup_init: 0.0002
clip_gradients_norm: 5.0python main.py --mode=train_and_eval \
--training_file_pattern=tfrecord/pascal*.tfrecord \
--validation_file_pattern=tfrecord/pascal*.tfrecord \
--model_name=$MODEL \
--model_dir=/tmp/$MODEL-finetune \
--ckpt=$MODEL \
--train_batch_size=12 \
--eval_batch_size=12 --eval_samples=36 \
--num_examples_per_epoch=595 --num_epochs=100 \
--hparams=voc_config.yamlpython model_inspect.py --runmode=infer \
--model_name=$MODEL --ckpt_path=/tmp/$MODEL-finetune \
--hparams=voc_config.yaml \
--input_image=test.jpg --output_image_dir=/tmp/