Skip to content

eeshangpt/topic-modelling

Repository files navigation

TOPIC MODELLING.

Create Data Directory.

Steps:

  • mkdir data
  • mkdir -p data/corpus
  • mkdir -p data/embedded
  • Extract all the documents in ./data. (EXPERIMENTAL)
    • dvc pull
  • If the above steps fails, please raise an issue on this repository.

Create Logs Directory.

Steps:

  • mkdir logs

Create Results Directory.

Steps:

  • mkdir res

Execute the scripts.

  • Executing Latent Dirichlet Allocation with TF-IDF vectorization.
    • python simple_topic_modelling.py

REFERENCES

  1. Topic modelling with Word Embedding, F. Esposito, A. Corraza, F. Cutugno, Third Italian Conference on Computational Linguistics CLiC-it 2016

About

Topic modelling

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages