Skip to content

An R api to search across and get full text for open access journals

License

Notifications You must be signed in to change notification settings

buco/fulltext

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

258 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

  _____     .__  .__   __                   __
_/ ____\_ __|  | |  |_/  |_  ____ ___  ____/  |_
\   __\  |  \  | |  |\   __\/ __ \\  \/  /\   __\
 |  | |  |  /  |_|  |_|  | \  ___/ >    <  |  |
 |__| |____/|____/____/__|  \___  >__/\_ \ |__|
                                \/      \/

Get full text across all da (open access) journals

Build Status Build status codecov.io rstudio mirror downloads cran version

rOpenSci has a number of R packages to get either full text, metadata, or both from various publishers. The goal of fulltext is to integrate these packages to create a single interface to many data sources.

fulltext attempts to make it easy to do text-mining by supporting the following steps:

  • Search for articles
  • Fetch articles
  • Get links for full text articles (xml, pdf)
  • Extract text from articles / convert formats
  • Collect bits of articles that you actually need

Additional steps we hope to include in future versions:

  • Analysis enable via the tm package and friends, or via Spark-R
  • Visualization

You can also download supplementary materials from papers.

Data sources in fulltext include:

We'd love your feedback. Let us know what you think in the issue tracker.

Article full text formats by publisher:

Installation

Stable version from CRAN

install.packages("fulltext")

Development version from GitHub

devtools::install_github("ropensci/fulltext")

Load library

library('fulltext')

Extraction tools

If you want to use ft_extract() function, it currently has two options for how to extract text from PDFs: xpdf and ghostscript.

Search

ft_search() - get metadata on a search query.

ft_search(query = 'ecology', from = 'plos')
#> Query:
#>   [ecology] 
#> Found:
#>   [PLoS: 29496; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0] 
#> Returned:
#>   [PLoS: 10; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0]

Get full text links

ft_links() - get links for articles (xml and pdf).

res1 <- ft_search(query = 'ecology', from = 'entrez', limit = 5)
ft_links(res1)
#> <fulltext links>
#> [Found] 4 
#> [IDs] ID_26420471 ID_26419522 ID_26419355 ID_26419232 ...

Or pass in DOIs directly

ft_links(res1$entrez$data$doi, from = "entrez")
#> <fulltext links>
#> [Found] 4 
#> [IDs] ID_26420471 ID_26419522 ID_26419355 ID_26419232 ...

Get full text

ft_get() - get full or partial text of articles.

ft_get('10.1371/journal.pone.0086169', from = 'plos')
#> <fulltext text>
#> [Docs] 1 
#> [Source] R session  
#> [IDs] 10.1371/journal.pone.0086169 ...

Extract chunks

library("rplos")
(dois <- searchplos(q = "*:*", fl = 'id',
   fq = list('doc_type:full',"article_type:\"research article\""), limit = 5)$data$id)
#> [1] "10.1371/journal.pone.0082888" "10.1371/journal.pone.0133894"
#> [3] "10.1371/journal.pone.0082883" "10.1371/journal.pone.0050020"
#> [5] "10.1371/journal.pone.0066417"
x <- ft_get(dois, from = "plos")
x %>% chunks("publisher") %>% tabularize()
#> $plos
#>                                               publisher
#> 1     Public Library of Science\n    San Francisco, USA
#> 2      Public Library of Science\nSan Francisco, CA USA
#> 3     Public Library of Science\n    San Francisco, USA
#> 4 Public Library of Science\n        San Francisco, USA
#> 5         Public Library of Science\nSan Francisco, USA
x %>% chunks(c("doi","publisher")) %>% tabularize()
#> $plos
#>                            doi
#> 1 10.1371/journal.pone.0082888
#> 2 10.1371/journal.pone.0133894
#> 3 10.1371/journal.pone.0082883
#> 4 10.1371/journal.pone.0050020
#> 5 10.1371/journal.pone.0066417
#>                                               publisher
#> 1     Public Library of Science\n    San Francisco, USA
#> 2      Public Library of Science\nSan Francisco, CA USA
#> 3     Public Library of Science\n    San Francisco, USA
#> 4 Public Library of Science\n        San Francisco, USA
#> 5         Public Library of Science\nSan Francisco, USA

Use dplyr to data munge

library("dplyr")
x %>%
 chunks(c("doi", "publisher", "permissions")) %>%
 tabularize() %>%
 .$plos %>%
 select(-permissions.license)
#>                            doi
#> 1 10.1371/journal.pone.0082888
#> 2 10.1371/journal.pone.0133894
#> 3 10.1371/journal.pone.0082883
#> 4 10.1371/journal.pone.0050020
#> 5 10.1371/journal.pone.0066417
#>                                               publisher
#> 1     Public Library of Science\n    San Francisco, USA
#> 2      Public Library of Science\nSan Francisco, CA USA
#> 3     Public Library of Science\n    San Francisco, USA
#> 4 Public Library of Science\n        San Francisco, USA
#> 5         Public Library of Science\nSan Francisco, USA
#>   permissions.copyright.year permissions.copyright.holder
#> 1                       2013                    Jing Wang
#> 2                       2015               Voorwald et al
#> 3                       2013        Nejati Javaremi et al
#> 4                       2012                     Pi et al
#> 5                       2013                   Wang et al
#>                       permissions.license_url
#> 1 http://creativecommons.org/licenses/by/4.0/
#> 2 http://creativecommons.org/licenses/by/4.0/
#> 3                                        <NA>
#> 4                                        <NA>
#> 5                                        <NA>

Supplementary materials

Grab supplementary materials for (re-)analysis of data

catching.crabs <- read.csv(ft_get_si("10.6084/m9.figshare.979288", 2))
head(catching.crabs)
#>   trap.no. length.deployed no..crabs
#> 1        1          10 sec         0
#> 2        2          10 sec         0
#> 3        3          10 sec         0
#> 4        4          10 sec         0
#> 5        5          10 sec         0
#> 6        1           1 min         0

Cache

When dealing with full text data, you can get a lot quickly, and it can take a long time to get. That's where caching comes in. And after you pull down a bunch of data, if you do so within the R session, you don't want to lose that data if the session crashes, etc. When you search you will be able to (i.e., not ready yet) optionally cache the raw JSON/XML/etc. of each request locally - when you do that exact search again we'll just give you the local data - unless of course you want new data, which you can do.

ft_get('10.1371/journal.pone.0086169', from='plos', cache=TRUE)

Extract text from PDFs

There are going to be cases in which some results you find in ft_search() have full text available in text, xml, or other machine readable formats, but some may be open access, but only in pdf format. We have a series of convenience functions in this package to help extract text from pdfs, both locally and remotely.

Locally, using code adapted from the package tm, and various pdf to text parsing backends

pdf <- system.file("examples", "example2.pdf", package = "fulltext")

Using ghostscript

(res_gs <- ft_extract(pdf, "gs"))
#> <document>/Users/sacmac/github/ropensci/fulltext/inst/examples/example2.pdf
#>   Title: pone.0107412 1..10
#>   Producer: Acrobat Distiller 9.0.0 (Windows); modified using iText 5.0.3 (c) 1T3XT BVBA
#>   Creation date: 2014-09-18

Using xpdf

(res_xpdf <- ft_extract(pdf, "xpdf"))
#> <document>/Users/sacmac/github/ropensci/fulltext/inst/examples/example2.pdf
#>   Pages: 10
#>   Title: pone.0107412 1..10
#>   Producer: Acrobat Distiller 9.0.0 (Windows); modified using iText 5.0.3 (c) 1T3XT BVBA
#>   Creation date: 2014-09-18

Or extract directly into a tm Corpus

paths <- sapply(paste0("example", 2:5, ".pdf"), function(x) system.file("examples", x, package = "fulltext"))
(corpus_xpdf <- ft_extract_corpus(paths, "xpdf"))
#> $meta
#>           names                           class
#> 1 content, meta PlainTextDocument, TextDocument
#> 2 content, meta PlainTextDocument, TextDocument
#> 3 content, meta PlainTextDocument, TextDocument
#> 4 content, meta PlainTextDocument, TextDocument
#> 
#> $data
#> <<VCorpus>>
#> Metadata:  corpus specific: 0, document level (indexed): 0
#> Content:  documents: 4
#> 
#> attr(,"class")
#> [1] "xpdf"

Extract pdf remotely on the web, using a service called PDFX

pdf5 <- system.file("examples", "example5.pdf", package = "fulltext")
pdfx(file = pdf5)
#> $meta
#> $meta$job
#> [1] "34b281c10730b9e777de8a29b2dbdcc19f7d025c71afe9d674f3c5311a1f2044"
#>
#> $meta$base_name
#> [1] "5kpp"
#>
#> $meta$doi
#> [1] "10.7554/eLife.03640"
#>
#>
#> $data
#> <?xml version="1.0" encoding="UTF-8"?>
#> <pdfx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://pdfx.cs.man.ac.uk/static/article-schema.xsd">
#>   <meta>
#>     <job>34b281c10730b9e777de8a29b2dbdcc19f7d025c71afe9d674f3c5311a1f2044</job>
#>     <base_name>5kpp</base_name>
#>     <doi>10.7554/eLife.03640</doi>
#>   </meta>
#>    <article>
#>  .....

TODO

  • ft_plot() - vizualize metadata or full text data

Meta

  • Please report any issues or bugs.
  • License: MIT
  • Get citation information for fulltext: citation(package = 'fulltext')
  • Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

rofooter

About

An R api to search across and get full text for open access journals

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages

  • R 99.8%
  • Makefile 0.2%