A complete, hands-on repository of Machine Learning algorithms
implemented from scratch and with libraries such as NumPy,
Pandas, and Scikit-learn.
Each chapter includes explanations, step-by-step logic, and real-world
datasets to help you learn ML by doing.
- Fundamentals of Machine Learning implemented in Python\
- Beginner-friendly, readable, fully commented code\
- Real datasets for practical learning\
- Covers both theory and implementation\
- Easy to extend and contribute
Machine-Learning/
│
├── kNN/
│ ├── simple_knn.py
│ ├── dating_knn.py
│ └── digit_recognition_knn.py
│
├── Decision Tree/
│ ├── decision_tree.py
│ └── sklearn_decision_tree.py
│
├── Naive Bayes/
│ ├── bayes.py
│ ├── bayes-modify.py
│ └── nbc.py
│
├── Logistic/
│ ├── LogRegres.py
│ ├── LogRegres-gj.py
│ └── colicLogRegres.py
│
├── SVM/
│ ├── svm-simple.py
│ ├── svm-smo.py
│ ├── svmMLiA.py
│ └── svm-svc.py
│
├── AdaBoost/
│ ├── adaboost.py
│ ├── horse_adaboost.py
│ ├── sklearn_adaboost.py
│ └── ROC.py
│
├── Regression/
│ ├── regression_old.py
│ ├── abalone.py
│ ├── regression.py
│ └── lego.py
│
└── Regression Trees/
└── regTrees.py
b0ea04c1d910f7678875fb03b6cb81eaaed4899c
git clone https://github.com/yourusername/Machine-Learning.git
cd Machine-Learning
pip install -r requirements.txtRun any algorithm directly:
python kNN/simple_knn.py
python Logistic/LogRegres.py
python SVM/svm-svc.py- Simple KNN classifier\
- Dating dataset classification\
- Digit recognition
- Loan prediction\
- Contact lenses classification
- Comment filtering\
- Spam filtering\
- News classification
- Logistic regression from scratch\
- Improved random gradient ascent\
- Horse mortality prediction
- SMO algorithms\
- Nonlinear SVM\
- Scikit-learn SVC
- Decision stump AdaBoost\
- Hard dataset AdaBoost\
- ROC plotting
- Ordinary & Locally Weighted LR\
- Abalone age prediction\
- Stepwise regression\
- Lego price prediction
- CART regression tree\
- Tree pruning
- Fork the repository\
- Create a new branch\
- Commit your changes\
- Submit a pull request
MIT License
If you find this useful, please consider starring ⭐ the repository!