NER labeling for handbag dataset
Baseline F1 Score to beat: 0.800
- Method
- 2 Bidirectional LSTMs for main and Time Distributed LSTM to capture character positioning
- Inputs
- Word Embeddings, POS embeddings, Character encoding from LSTM
- Tags
- Retagged with BIOS tags for multi-token
- Data
- Training set + random expansion
Model Params: 12,852,467
epochs: 10
Result - F1 Score: 0.82313
- Method
- 2 Bidirectional LSTMs
- Inputs
- Word Embeddings and POS embeddings
- Tags
- Retagged with BIOS tags for multi-token
- Data
- Training set + random expansion
Model Params: 12,708,947
epochs: 12
Result - F1 Score: 0.8149