Contains material relevant to "Deep Into CNN" Project.
- Local Setup (Use Conda : recommended)
https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html#installation - (Optional: Basic Python and libraries) https://duchesnay.github.io/pystatsml/index.html#scientific-python
- ( Optional : For those with very basic ml knowledge: Only 2.1-2.7) https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
- Linear Regression:
https://medium.com/analytics-vidhya/simple-linear-regression-with-example-using-numpy-e7b984f0d15e - Logistic Regression: https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
Find in NeuralNetIntro : W2-3.
- This one is highly recommended:
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
Some more material (bit extensive, so be careful):
https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI - Basic Backprop:
https://ml-cheatsheet.readthedocs.io/en/latest/backpropagation.html - Backprop (Mathematical Version):
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ - Softmax:
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ - Pytorch(Skip the CNN part if you want for now):
https://pytorch.org/tutorials/beginner/basics/intro.html - Optional guide:
http://neuralnetworksanddeeplearning.com/chap1.html
Find in PyTorch : W2-3.