-
Notifications
You must be signed in to change notification settings - Fork 0
🤖 Multi-Agent Coordination & Workflow Engine - Advanced AI Orchestration System #12
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
🤖 Multi-Agent Coordination & Workflow Engine - Advanced AI Orchestration System #12
Conversation
Features implemented: - Advanced workflow orchestration with dependency resolution - ML-based resource allocation and optimization - Intelligent agent registry with load balancing - Real-time monitoring with alerting and analytics - Distributed execution planning with critical path analysis - Container orchestration integration (Kubernetes, Docker) - Comprehensive workflow templates for common scenarios - Fault tolerance with circuit breakers and auto-recovery - Performance analytics with trend analysis and anomaly detection - Event-driven coordination protocols with message passing Architecture: - Modular design with clear separation of concerns - Async/await throughout for high performance - Plugin-based extensibility for custom agents and workflows - Cloud-native deployment ready with Docker and Kubernetes - Integration with external monitoring systems (Prometheus, Grafana) Robustness upgrades: - Advanced dependency graph optimization algorithms - Machine learning-based resource allocation and performance prediction - Distributed workflow execution across multiple compute nodes - Advanced fault tolerance with automatic workflow recovery - Real-time workflow adaptation based on execution performance - Integration with container orchestration platforms Examples included: - Software development workflow (planning → coding → testing → deployment) - ML model development pipeline (data → training → evaluation → deployment) - Data pipeline workflow (ingestion → transformation → validation → deployment) - Infrastructure provisioning (planning → network → compute → security → monitoring) - Parallel workflow execution with resource coordination
Reviewer's GuideThis PR introduces a fully featured multi‐agent orchestration system, adding six core modules—monitoring, resource management, messaging, planning, workflow execution, and agent registry—plus workflow templates, examples, tests, and deployment/configuration files to deliver dynamic AI‐driven workflows with ML optimization, fault tolerance, and real‐time observability. Sequence Diagram for Workflow Creation and ExecutionsequenceDiagram
actor User
participant MAC as MultiAgentCoordinator
participant WE as WorkflowEngine
participant Agents
User->>MAC: create_workflow(template, params)
activate MAC
MAC->>WE: Generate workflow plan
activate WE
WE-->>MAC: Workflow Plan (workflow_id)
deactivate WE
MAC-->>User: workflow_id
deactivate MAC
User->>MAC: execute_workflow(workflow_id)
activate MAC
MAC->>WE: Start execution(workflow_id)
activate WE
loop For each task in workflow
WE->>Agents: Assign task (to specific Agent)
activate Agents
Agents-->>WE: Task Result/Status
deactivate Agents
end
WE-->>MAC: Workflow Complete/Failed
deactivate WE
MAC-->>User: Execution Success/Failure
deactivate MAC
Sequence Diagram for Resource Allocation RequestsequenceDiagram
participant Agent
participant RM as ResourceManager
participant MLRO as MLResourceOptimizer
participant Node as ResourceNode
Agent->>RM: request_resources(ResourceRequest)
activate RM
alt ML Optimization Enabled
RM->>MLRO: predict_optimal_allocation(request, nodes)
activate MLRO
MLRO-->>RM: AllocationPredictions
deactivate MLRO
end
RM->>Node: allocate_on_node(resource_spec)
activate Node
Node-->>RM: Allocation Succeeded/Failed
deactivate Node
RM-->>Agent: AllocationConfirmation / Failure
deactivate RM
Sequence Diagram for Metric Collection and AlertingsequenceDiagram
participant Comp as MonitoredComponent
participant MC as MetricsCollector
participant AM as AlertManager
participant NH as NotificationHandler
Comp->>MC: record_metric(MetricData)
activate MC
MC-->>Comp: Ack
deactivate MC
MC->>AM: Provide latest metrics periodically
activate AM
AM->>AM: Evaluate metrics against AlertRules
alt AlertRule condition met
AM->>AM: Create Alert
AM->>NH: send_alert_notification(Alert)
activate NH
NH-->>AM: Ack
deactivate NH
end
deactivate AM
Entity Relationship Diagram for Core Data StructureserDiagram
Workflow {
string workflow_id PK
string name
string status
}
ExecutionPlan {
string plan_id PK
string workflow_id FK
datetime created_at
}
ExecutionStep {
string step_id PK
string plan_id FK
string task_id
string agent_type
float estimated_duration
}
Metric {
string metric_id PK
string name
float value
datetime timestamp
string workflow_id FK "nullable"
}
Alert {
string alert_id PK
string name
string severity
string message
datetime timestamp
string metric_id FK "nullable"
}
ResourceRequest {
string request_id PK
string requester_id
datetime created_at
}
ResourceAllocation {
string allocation_id PK
string request_id FK
string node_id
float allocated_amount
datetime allocated_at
}
ResourceSpec {
string spec_id PK
string request_id FK
string resource_type
float amount
}
Workflow ||--|{ ExecutionPlan : "has"
ExecutionPlan ||--|{ ExecutionStep : "contains"
ExecutionStep }o--|| ExecutionStep : "depends_on"
Workflow ||--o{ Metric : "generates_runtime"
Metric ||--o{ Alert : "can_trigger"
ResourceRequest ||--|{ ResourceSpec : "specifies"
ResourceRequest ||--o{ ResourceAllocation : "leads_to"
Class Diagram for Monitoring SystemclassDiagram
direction LR
class MetricType {
<<enumeration>>
COUNTER
GAUGE
HISTOGRAM
TIMER
}
class AlertSeverity {
<<enumeration>>
INFO
WARNING
ERROR
CRITICAL
}
class Metric {
+name: str
+value: float
+metric_type: MetricType
+tags: Dict[str, str]
+timestamp: datetime
+to_dict() Dict
}
class WorkflowMetrics {
+workflow_id: str
+status: str
+progress: float
+task_count: int
+running_tasks: int
+failed_tasks: int
+start_time: Optional[datetime]
+end_time: Optional[datetime]
+duration: Optional[float]
+resource_usage: Dict[str, float]
+to_dict() Dict
}
class Alert {
+id: str
+name: str
+severity: AlertSeverity
+message: str
+source: str
+tags: Dict[str, str]
+timestamp: datetime
+resolved: bool
+resolved_at: Optional[datetime]
+to_dict() Dict
}
class AlertRule {
+name: str
+condition: Callable
+severity: AlertSeverity
+message_template: str
+cooldown: int
+last_triggered: Optional[datetime]
+should_trigger(metrics) bool
+trigger(metrics) Alert
}
class MetricsCollector {
+collection_interval: int
+start() None
+stop() None
+record_metric(metric: Metric) None
+get_metric_summary(metric_name, metric_type) Dict
+get_recent_metrics(limit) List~Metric~
}
class AlertManager {
+alert_rules: List~AlertRule~
+active_alerts: Dict~str, Alert~
+start() None
+stop() None
+add_rule(rule: AlertRule) None
+check_alerts(metrics: Dict) List~Alert~
+resolve_alert(alert_id: str) bool
}
class PerformanceAnalyzer {
+record_performance_data(metric_name, value, timestamp) None
+analyze_trends(metric_name) Dict
+detect_anomalies(metric_name, threshold_std) List~Dict~
+get_performance_summary() Dict
}
class MonitoringSystem {
+metrics_collector: MetricsCollector
+alert_manager: AlertManager
+performance_analyzer: PerformanceAnalyzer
+start() None
+stop() None
+record_workflow_metrics(metrics: WorkflowMetrics) None
+record_agent_metrics(agent_id, metrics) None
+get_system_status() Dict
+health_check() Dict
}
MonitoringSystem o-- MetricsCollector
MonitoringSystem o-- AlertManager
MonitoringSystem o-- PerformanceAnalyzer
MetricsCollector ..> Metric : records
AlertManager o-- AlertRule : uses
AlertManager ..> Alert : creates/manages
Metric ..> MetricType : uses
Alert ..> AlertSeverity : uses
AlertRule ..> AlertSeverity : uses
MonitoringSystem ..> WorkflowMetrics : records
Class Diagram for Resource ManagerclassDiagram
direction LR
class ResourceType {
<<enumeration>>
CPU
MEMORY
GPU
STORAGE
NETWORK
CUSTOM
}
class AllocationStrategy {
<<enumeration>>
FIRST_FIT
BEST_FIT
WORST_FIT
ML_OPTIMIZED
PRIORITY_BASED
}
class ResourceSpec {
+resource_type: ResourceType
+amount: float
+unit: str
}
class ResourceRequest {
+id: str
+requester_id: str
+resources: List~ResourceSpec~
+priority: int
}
class ResourceAllocation {
+id: str
+request_id: str
+resource_spec: ResourceSpec
+allocated_amount: float
+node_id: str
+is_expired() bool
}
class ResourceNode {
+id: str
+name: str
+resources: Dict~ResourceType, float~
+allocated: Dict~ResourceType, float~
+get_available(resource_type: ResourceType) float
+can_allocate(resource_spec: ResourceSpec) bool
+allocate(resource_spec: ResourceSpec) bool
+deallocate(resource_spec: ResourceSpec) bool
}
class MLResourceOptimizer {
+record_allocation(request, allocation, metrics) None
+predict_optimal_allocation(request, nodes) List
}
class ResourceManager {
+allocation_strategy: AllocationStrategy
+nodes: Dict~str, ResourceNode~
+allocations: Dict~str, ResourceAllocation~
+ml_optimizer: Optional~MLResourceOptimizer~
+register_node(node: ResourceNode) bool
+request_resources(request: ResourceRequest) Optional[str]
+allocate(request: ResourceRequest) Optional[List~ResourceAllocation~]
+release(allocation_id: str) bool
+shutdown() None
}
ResourceManager o-- MLResourceOptimizer
ResourceManager o-- AllocationStrategy
ResourceManager "1" *-- "0..*" ResourceNode : manages
ResourceManager "1" *-- "0..*" ResourceAllocation : creates
ResourceRequest "1" -- "1..*" ResourceSpec : requests
ResourceAllocation "1" -- "1" ResourceSpec : grants
ResourceAllocation -- ResourceRequest : fulfills
ResourceNode -- ResourceType
ResourceSpec -- ResourceType
Class Diagram for Coordination ProtocolsclassDiagram
direction LR
class MessageType {
<<enumeration>>
TASK_REQUEST
TASK_RESPONSE
STATUS_UPDATE
HEARTBEAT
COORDINATION
BROADCAST
}
class MessagePriority {
<<enumeration>>
LOW
NORMAL
HIGH
CRITICAL
}
class AgentMessage {
+id: str
+sender_id: str
+receiver_id: Optional[str]
+message_type: MessageType
+priority: MessagePriority
+payload: Dict
+is_expired() bool
+to_dict() Dict
}
class MessageHandler {
<<Interface>>
+handle_message(message: AgentMessage) Optional~AgentMessage~
+can_handle(message: AgentMessage) bool
}
class MessageBus {
+register_agent(agent_id: str) None
+send_message(message: AgentMessage) bool
+receive_message(agent_id: str) Optional~AgentMessage~
+register_handler(agent_id: str, handler: MessageHandler) None
+shutdown() None
}
class CoordinationProtocol {
<<Interface>>
+coordinate(agents: List~str~, task_data: Dict) Dict
}
class ConsensusProtocol {
+message_bus: MessageBus
+coordinate(agents: List~str~, task_data: Dict) Dict
}
class LeaderElectionProtocol {
+message_bus: MessageBus
+coordinate(agents: List~str~, task_data: Dict) Dict
}
AgentMessage o-- MessageType
AgentMessage o-- MessagePriority
MessageBus ..> AgentMessage : sends/receives
MessageBus o-- "*" MessageHandler : uses
ConsensusProtocol --|> CoordinationProtocol
LeaderElectionProtocol --|> CoordinationProtocol
ConsensusProtocol o-- MessageBus
LeaderElectionProtocol o-- MessageBus
Class Diagram for Execution PlannerclassDiagram
direction LR
class PlanningStrategy {
<<enumeration>>
TOPOLOGICAL
CRITICAL_PATH
RESOURCE_AWARE
ML_OPTIMIZED
ADAPTIVE
}
class OptimizationObjective {
<<enumeration>>
MINIMIZE_TIME
MINIMIZE_COST
MAXIMIZE_THROUGHPUT
}
class ExecutionStep {
+id: str
+task_id: str
+agent_type: str
+estimated_duration: float
+resource_requirements: Dict
+dependencies: Set~str~
+is_critical() bool
}
class ExecutionPlan {
+id: str
+workflow_id: str
+steps: Dict~str, ExecutionStep~
+critical_path: List~str~
+estimated_total_duration: float
+optimization_objective: OptimizationObjective
+add_step(step: ExecutionStep) None
+get_ready_steps() List~ExecutionStep~
}
class MLPlanningOptimizer {
+predict_duration(agent_type: str, complexity: float) float
+predict_resource_usage(agent_type: str, complexity: float) Dict
+optimize_plan(plan: ExecutionPlan) ExecutionPlan
}
class ExecutionPlanner {
+strategy: PlanningStrategy
+ml_optimizer: Optional~MLPlanningOptimizer~
+create_plan(workflow: Any, objective: OptimizationObjective) ExecutionPlan
+update_plan(plan_id: str, feedback: Dict) Optional~ExecutionPlan~
}
ExecutionPlanner o-- MLPlanningOptimizer
ExecutionPlanner o-- PlanningStrategy
ExecutionPlanner ..> ExecutionPlan : creates
ExecutionPlan "1" *-- "0..*" ExecutionStep : contains
ExecutionPlan o-- OptimizationObjective
ExecutionStep --> ExecutionStep : depends on
File-Level Changes
Tips and commandsInteracting with Sourcery
Customizing Your ExperienceAccess your dashboard to:
Getting Help
|
|
Important Review skippedBot user detected. To trigger a single review, invoke the You can disable this status message by setting the 🪧 TipsChatThere are 3 ways to chat with CodeRabbit:
SupportNeed help? Join our Discord community for assistance with any issues or questions. Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. CodeRabbit Commands (Invoked using PR comments)
Other keywords and placeholders
CodeRabbit Configuration File (
|
🤖 Multi-Agent Coordination & Workflow Engine
🎯 Overview
This PR implements a sophisticated multi-agent coordination system that orchestrates parallel and sequential execution of AI agents with intelligent workflow management, resource optimization, and advanced monitoring capabilities.
✨ Key Features Implemented
🧠 Core Orchestration Engine
🔧 Advanced Capabilities
🏗️ Architecture
📁 Implementation Structure
🚀 Robustness Upgrades Implemented
1. Advanced Workflow Optimization
2. Machine Learning-Based Resource Allocation
3. Distributed Workflow Execution
4. Advanced Fault Tolerance
5. Real-time Workflow Adaptation
6. Container Orchestration Integration
📊 Workflow Templates
1. Software Development Workflow
Complete SDLC automation:
2. ML Model Development Pipeline
End-to-end ML workflow:
3. Data Pipeline Workflow
Robust data processing:
4. Infrastructure Provisioning
Cloud infrastructure automation:
🧪 Examples and Usage
The implementation includes comprehensive examples demonstrating:
🐳 Deployment Options
Docker Compose
Kubernetes
📈 Performance Characteristics
🔗 Integration Points
✅ Testing
Comprehensive test suite covering:
📚 Documentation
🎯 Benefits
This implementation provides a robust foundation for AI-powered development workflows with enterprise-grade reliability, scalability, and observability.
💻 View my work • About Codegen
Summary by Sourcery
Implement an end-to-end multi-agent coordination and workflow orchestration system.
New Features:
Enhancements:
Build:
Documentation:
Tests: