Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 43 additions & 43 deletions AutoNormal/AutoNorm.py
Original file line number Diff line number Diff line change
@@ -1,84 +1,84 @@

from __future__ import division


def GetAverage(mat):

n=len(mat)
m= width(mat)
n = len(mat)
m = width(mat)
num = [0]*m
for j in range(0,m):
for j in range(m):
for i in mat:
num[j]=num[j]+i[j]
num[j]=num[j]/n
num[j] = num[j] + i[j]
num[j] = num[j]/n
return num

def width(lst):
i=0
i = 0
for j in lst[0]:
i=i+1
i = i + 1
return i

def GetVar(average,mat):
ListMat=[]
ListMat = []
for i in mat:
ListMat.append(list(map(lambda x: x[0]-x[1], zip(average, i))))

n=len(ListMat)
m= width(ListMat)
n = len(ListMat)
m = width(ListMat)
num = [0]*m
for j in range(0,m):
for j in range(m):
for i in ListMat:
num[j]=num[j]+(i[j]*i[j])
num[j]=num[j]/n
num[j] = num[j] + (i[j] * i[j])
num[j] = num[j]/n
return num

def DenoisMat(mat):
average=GetAverage(mat)
variance=GetVar(average,mat)
section=list(map(lambda x: x[0]+x[1], zip(average, variance)))
average = GetAverage(mat)
variance = GetVar(average, mat)
section = list(map(lambda x: x[0]+x[1], zip(average, variance)))

n=len(mat)
m= width(mat)
n = len(mat)
m = width(mat)
num = [0]*m
denoisMat=[]
denoisMat = []
for i in mat:
for j in range(0,m):
if i[j]>section[j]:
i[j]=section[j]
for j in range(m):
if i[j] > section[j]:
i[j] = section[j]
denoisMat.append(i)
return denoisMat

def AutoNorm(mat):
n=len(mat)
m= width(mat)
MinNum=[9999999999]*m
n = len(mat)
m = width(mat)
MinNum = [9999999999]*m
MaxNum = [0]*m
for i in mat:
for j in range(0,m):
if i[j]>MaxNum[j]:
MaxNum[j]=i[j]
for j in range(m):
if i[j] > MaxNum[j]:
MaxNum[j] = i[j]

for p in mat:
for q in range(0,m):
if p[q]<=MinNum[q]:
MinNum[q]=p[q]
for q in range(m):
if p[q] <= MinNum[q]:
MinNum[q] = p[q]

section=list(map(lambda x: x[0]-x[1], zip(MaxNum, MinNum)))
section = list(map(lambda x: x[0]-x[1], zip(MaxNum, MinNum)))
print section
NormMat=[]
NormMat = []

for k in mat:

distance=list(map(lambda x: x[0]-x[1], zip(k, MinNum)))
value=list(map(lambda x: x[0]/x[1], zip(distance,section)))
distance = list(map(lambda x: x[0]-x[1], zip(k, MinNum)))
value = list(map(lambda x: x[0]/x[1], zip(distance,section)))
NormMat.append(value)
return NormMat

if __name__=='__main__':
mat=[[1,42,512],[4,5,6],[7,8,9],[2,2,2],[2,10,5]]
a=GetAverage(mat)
b=GetVar(a,mat)
print a,
if __name__ == '__main__':
mat = [[1, 42, 512], [4, 5, 6], [7, 8, 9], [2, 2, 2], [2, 10, 5]]
a = GetAverage(mat)
b = GetVar(a,mat)
print a
print DenoisMat(mat)

# print list(map(lambda x: x[0]-x[1], zip(v2, v1)))
print AutoNorm(mat)
print AutoNorm(mat)
37 changes: 17 additions & 20 deletions DecisionTree/src/dt.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,31 +3,31 @@


def calcShannonEnt(dataSet):
numEntries=len(dataSet)
numEntries = len(dataSet)

labelCounts={}
labelCounts = {}

for featVec in dataSet:
currentLabel=featVec[-1]
currentLabel = featVec[-1]

if currentLabel not in labelCounts.keys():
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannonEnt=0.0
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0

for key in labelCounts:

prob =float(labelCounts[key])/numEntries
shannonEnt-=prob*math.log(prob,2)
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob*math.log(prob,2)

return shannonEnt


def createDataSet():

dataSet=[[1,0,'man'],[1,1,'man'],[0,1,'man'],[0,0,'women']]
labels=['throat','mustache']
return dataSet,labels
dataSet = [[1, 0, 'man'], [1, 1, 'man'], [0, 1, 'man'], [0, 0, 'women']]
labels = ['throat', 'mustache']
return dataSet, labels

def splitDataSet(dataSet, axis, value):
retDataSet = []
Expand Down Expand Up @@ -58,10 +58,6 @@ def chooseBestFeatureToSplit(dataSet):
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer





def majorityCnt(classList):
classCount={}
Expand Down Expand Up @@ -99,20 +95,21 @@ def classify(inputTree,featLabels,testVec):
valueOfFeat = secondDict[key]
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
else:
classLabel = valueOfFeat
return classLabel

def getResult():
dataSet,labels=createDataSet()
dataSet, labels = createDataSet()
# splitDataSet(dataSet,1,1)
chooseBestFeatureToSplit(dataSet)
# print chooseBestFeatureToSplit(dataSet)
#print calcShannonEnt(dataSet)
mtree=createTree(dataSet,labels)
mtree = createTree(dataSet, labels)
print mtree

print classify(mtree,['throat','mustache'],[0,0])
print classify(mtree, ['throat', 'mustache'], [0, 0])

if __name__=='__main__':
if __name__ == '__main__':
getResult()