This repository contains the source code for the paper "LLM4Band: Enhancing Reinforcement Learning with Large Language Models for Accurate Bandwidth Estimation".
- Download the dataset from RL4BandwidthEstimationChallenge, download the pre-trained model from huggingface(gpt2, t5, qwen).
- Split the dataset and preprocess the data (pickle format).
- Replace the model path in the code, train model: run
IQL.py.
- Prepare offline testing scenario in
validation/prepare_scenario, evaluate the model invalidation/evaluate.
-
Test environment: AlphaRTC
-
Download link for the docker image: alphartc4band
-
Download link for the test media: testmedia
-
Limit port traffic, run:
modprobe sch_netem modprobe sch_htb docker run --rm -it -v $(pwd)/LLM4Band:/app -w /app -e PYTHONPATH=/usr/lib/python3/dist-packages --name alphartc4band --cap-add=NET_ADMIN alphartc4band -
Entering the container, run:
sudo /root/go/bin/comcast --device lo --target-port 8000 --target-bw 200 --latency 50 --packet-loss 1 peerconnection_serverless receiver_pyinfer.json -
Stop:
comcast --device lo --stop -
Perform the test task in another terminal:
docker exec alphartc4band peerconnection_serverless sender_pyinfer.json -
Calculate the score:
docker run --rm -v `pwd`/LLM4Band:/app -w /app/metrics --name eval alphartc4band python3 eval_network.py --dst_network_log /app/logging/webrtc.log --output /app/result/out_eval_network.json --ground_recv_rate 500 --max_delay 500
@inproceedings{wang2025llm4band,
title={LLM4Band: Enhancing Reinforcement Learning with Large Language Models for Accurate Bandwidth Estimation},
author={Wang, Zhijian and Lu, Rongwei and Zhang, Zhiyang and Westphal, Cedric and He, Dongbiao and Jiang, Jingyan},
booktitle={Proceedings of the 35th Workshop on Network and Operating System Support for Digital Audio and Video},
pages={43--49},
year={2025}
}- RL4BandwidthEstimationChallenge - dataset
- AlphaRTC - simulation platform
- NAORL, CORL, HuggingFace - tools
- BoB, Schaferct, HRCC, Pioneer - baselines