Skip to content

TiezMind/EMDFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation


EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection

EMDFNet是一种高效的多尺度多特征网络,专为交通标志检测设计。该网络结合了多尺度特征提取和多样化特征融合技术,显著提升了交通标志检测的精度和效率。

目录

简介

EMDFNet结合了多尺度特征提取和多样化特征融合技术,通过端到端的训练方法实现高效的交通标志检测。该网络在保持高精度的同时,具有较低的计算开销,非常适合实时应用。

特性

  • 高效检测: 结合多尺度特征提取和多样化特征融合,提升检测效率。
  • 端到端训练: EMDFNet采用端到端的训练方法,从输入图像直接到检测结果。
  • 高精度: 在检测精度上,EMDFNet达到领先水平,尤其在复杂交通场景中表现出色。

安装

  1. 克隆该仓库
    git clone https://github.com/your_username/EMDFNet.git
    cd EMDFNet
  2. 安装依赖
    pip install -r requirements.txt

使用方法

  1. 下载预训练模型权重,并将其放置在weights目录下。
  2. 运行以下命令进行交通标志检测:
    python demo.py --image_path /path/to/your/image.jpg
  3. 检测结果将保存在output目录中。

训练模型

  1. 准备数据集,并按照以下结构组织:
    /data
        /images
            /train
            /val
        /labels
            /train
            /val
    
  2. 修改配置文件config.yaml,设置数据集路径、模型参数等。
  3. 运行以下命令开始训练:
    python train.py --config_path config.yaml

评估模型

  1. 使用以下命令评估模型性能:
    python eval.py --config_path config.yaml --weights_path /path/to/your/weights.pth

贡献

欢迎对本项目进行贡献!请通过以下方式参与:

  1. Fork本仓库。
  2. 创建您的特性分支(git checkout -b feature/AmazingFeature)。
  3. 提交您的修改(git commit -m 'Add some AmazingFeature')。
  4. 推送到分支(git push origin feature/AmazingFeature)。
  5. 提交Pull Request。

许可证

本项目采用MIT许可证。详情请参阅LICENSE文件。


About

EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published