Skip to content

PTBresearch/MetricLib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MetricLib Project

Overview

MetricLib: an extensible toolkit for holistic data quality evaluation of medical ML datasets, based on the theoretical METRIC-framework for trustworthy AI in medicine. The toolkit is able to process a range of data modalities in a memory-efficient manner. While a core set of DQ metrics is implemented, MetricLib is easily extensible with custom metrics and therefore allows investigation of use-case-specific requirements. Additionally, by aggregated DQ scores, the tool enables the efficient identification of data quality gaps.

Project Structure

metriclib/
    __init__.py
    data.py
    metric.py
    report.py
    metrics/
        measurement_process.py
        timeliness.py
        representativeness.py
        informativeness.py
        consistency.py
notebooks/
    example_ptbxl.ipynb
data/
tests/
    __init__.py
    test_dataset.py
    test_metrics.py
    test_report.py

Installation

  1. Clone the repository:
    git clone git@gitlab1.ptb.de:martin.seyferth/metriclib.git
    cd metriclib
  2. Install locally:
    pip install -e .

Usage

An example implementation of creating a Data Quality report can be found here

Metrics

Metric Name Implemented Tested
Hill Numbers x x
Mean x x
Standard deviation x x
IQR x x
Syntactic Consistency x
Limit of Quantification x
Sample Entropy x
Maximum Mean Discrepency x

A documentation of required and optional parameters can be found here: https://github.com/PTBresearch/MetricLib/blob/main/metriclib/metric.py

Testing

Run the unit tests using pytest:

pytest tests/

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published