Skip to content

The Implementation used to test Color-Spatial AutoAugment in "Color-Spatial AutoAugment Another Approach To AutoAugment Policies Found & Implementation"

Notifications You must be signed in to change notification settings

NullJutsu/Color-Spatial-AutoAugment

Repository files navigation

Color-Spatial-AutoAugment

The Implementation used to test Color-Spatial AutoAugment in "Color-Spatial AutoAugment Another Approach To AutoAugment Policies Found & Implementation".

Pretrained Models and their TensorBoard can be found Here.

Required Packages

  • Torch Package.
  • TorchSummary
  • tqdm
  • scipy
  • scikit-learn
  • seaborn
  • tensorboard

install the required packages using

pip install -r requirements.txt

Or run venv_Install.ps1 to create the venv and install the required packages.

Training Steps

  • Run the venv or run venv_Run.ps1 to activate the venv.
  • run main.py to start the training or edit config.py for extra settings.
  • --augment have two options AutoAugment to train using AutoAugment and Augment to run using Color-Spatial AutoAugment.
  • --dataset either cifar10 , cifar10_reduced orcifar100.
  • --network either resnet18 , resnet50 and wideresnet for WideResNet28-10

After running the required epochs, run main_linear.py for the learner classifier.

and example of training using Color-Spatial AutoAugment with backbone ResNet50 for 1000 epochs

python main.py --augment Augment --dataset cifar10 --network resnet50 --epochs 1000 --batch_size 64
  • Important Note: All tests were done on batch size 64 due to memory restrictions on the testing setup.

The table shows the accuracy of Cifar-10 with both AutoAugment and Color-Spatial AutoAugment on the different networks; for the ResNet50, we Show the accuracy for both 300 epochs and 1000.

Epochs Network AA CS-AA
ResNet18 77.48 82.49
300 ResNet50 79.51 85.74
WideResNet 28-10 79.01 82.13
1000 ResNet50 85.56 91.1

About

The Implementation used to test Color-Spatial AutoAugment in "Color-Spatial AutoAugment Another Approach To AutoAugment Policies Found & Implementation"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published