Computational hazard assessment of MeOx nanoparticle toxicity using machine learning
- modelling.R: code for the core machine learning
- vif.R: code for variance inflation factor analysis
- normalise.R: code for normalisation
- ApplicabilityDomain.R: code for applicability domain analysis
- deployment.R: code for prediction of new instances
- dataset.txt: dataset used in the study
- model_***.RDS: RDS objects of the machine learning models created (namely Logistic, RandomForest, SVM, Neural Nets)
- normalised_train_data.Rdata: R object of the normalised train data used in the study.
Nilesh Anantha Subramanian, Ashok Palaniappan. NanoTox: Development of a Parsimonious In Silico Model for Toxicity Assessment of Metal-Oxide Nanoparticles Using Physicochemical Features. ACS Omega Article ASAP DOI: 10.1021/acsomega.1c01076
Correspondence: apalaniaATscbtDOTsastraDOTedu (A.P.)
Copyright (c) 2020 the Authors. MIT License