Skip to content

LiquidLib/liquidlib

Repository files navigation

liquidlib

A Python library for modeling and interpolating physical properties of liquids at specified temperatures. This library is particularly useful for laboratory automation and liquid handling systems.

Features

  • Temperature-based interpolation of liquid properties:
    • Vapor pressure
    • Density
    • Surface tension
    • Viscosity
  • Automatic calculation of liquid handling parameters based on physical properties
  • JSON serialization support
  • Comprehensive test coverage
  • Opentrons robot integration for automated liquid handling

Installation

pip install liquidlib

Usage

Basic Usage

from liquidlib import Liquid

# Create a liquid with properties at 20°C and 25°C
liquid = Liquid(
    vapor_pressure_20c=100,    # Vapor pressure at 20°C
    vapor_pressure_25c=120,    # Vapor pressure at 25°C
    density_20c=1.0,          # Density at 20°C
    density_25c=0.98,         # Density at 25°C
    surface_tension_20c=72,   # Surface tension at 20°C
    surface_tension_25c=70,   # Surface tension at 25°C
    viscosity_20c=1.0,        # Viscosity at 20°C
    viscosity_25c=0.9,        # Viscosity at 25°C
    lab_temperature=22.5      # Current lab temperature
)

# Access interpolated properties
print(f"Density at {liquid._lab_temp}°C: {liquid.density}")
print(f"Viscosity at {liquid._lab_temp}°C: {liquid.viscosity}")

# Get liquid handling parameters
print(f"Aspirate speed: {liquid.handling.aspirate_speed}")
print(f"Dispense speed: {liquid.handling.dispense_speed}")

# Export to JSON
json_data = liquid.to_json()

Custom Handling Parameters

from liquidlib import Liquid, LiquidHandling

# Create custom handling parameters
handling = LiquidHandling(
    trailing_air_gap=2.0,
    blowout=5.0,
    pre_wet=True,
    aspirate_speed=0.8,
    dispense_speed=0.6
)

# Create liquid with custom handling
liquid = Liquid(
    vapor_pressure_20c=100,
    vapor_pressure_25c=120,
    density_20c=1.0,
    density_25c=0.98,
    surface_tension_20c=72,
    surface_tension_25c=70,
    viscosity_20c=1.0,
    viscosity_25c=0.9,
    handling=handling
)

Using Pre-defined Liquid Classes

The library comes with several pre-defined liquid classes for common laboratory liquids. These classes have carefully measured physical properties and are ready to use:

from liquidlib.liquids import Water, Ethanol, Glycerin, DMSO

# Create instances with default lab temperature (22.5°C)
water = Water()
ethanol = Ethanol()

# Or specify a custom lab temperature
glycerin = Glycerin(lab_temperature=25.0)
dmso = DMSO(lab_temperature=23.5)

# Access physical properties
print(f"Water density at {water._lab_temp}°C: {water.density} g/mL")
print(f"Ethanol viscosity at {ethanol._lab_temp}°C: {ethanol.viscosity} mPa·s")

# Get optimized handling parameters
print(f"Glycerin aspirate speed: {glycerin.handling.aspirate_speed}")
print(f"DMSO dispense speed: {dmso.handling.dispense_speed}")

# Export to JSON for storage or sharing
water_json = water.to_json()

Available pre-defined liquids include:

  • Water: Standard laboratory water
  • Ethanol: 100% ethanol
  • Glycerin: Pure glycerin
  • DMSO: Dimethyl sulfoxide

The community is encouraged to add more!

Each pre-defined class comes with:

  • Accurate physical properties at multiple temperatures
  • Optimized handling parameters
  • Temperature-based property interpolation
  • JSON serialization support

Opentrons Robot Integration

liquidlib includes an adapter for Opentrons pipetting robots, making it easy to handle viscous liquids with optimized parameters. The OpentronsLiquidHandler class provides specialized methods for aspirating and dispensing viscous liquids with robot-specific optimizations.

Basic Opentrons Usage

from liquidlib.adapters.opentrons import OpentronsLiquidHandler
from liquidlib import Liquid, LiquidHandling

# In your Opentrons protocol
def run(protocol: protocol_api.ProtocolContext):
    # Setup your labware and instruments
    tiprack = protocol.load_labware('opentrons_96_tiprack_300ul', '4')
    p300 = protocol.load_instrument('p300_single_gen2', 'left', tip_racks=[tiprack])
    tube_rack = protocol.load_labware('opentrons_24_tuberack_eppendorf_1.5ml_safelock_snapcap', '5')
    plate = protocol.load_labware('corning_96_wellplate_360ul_flat', '6')
    
    # Initialize the liquid handler with optimized parameters
    handler = OpentronsLiquidHandler(protocol, p300, 'optimized_pipette_parameters.csv')
    
    # Create a liquid object using liquidlib
    glycerol = Liquid(
        vapor_pressure_20c=0.0001,
        vapor_pressure_25c=0.0002,
        density_20c=1.26,
        density_25c=1.25,
        surface_tension_20c=63.0,
        surface_tension_25c=62.0,
        viscosity_20c=945.0,
        viscosity_25c=800.0,
        lab_temperature=22.5
    )
    
    # Method 1: Use predefined parameters from CSV file
    handler.handle_liquid("Glycerol 90%", 75, tube_rack['A1'], plate['E5'])
    
    # Method 2: Use liquidlib-calculated parameters
    aspiration_rate = glycerol.handling.aspirate_speed * 300  # Convert to µL/s
    dispense_rate = glycerol.handling.dispense_speed * 300    # Convert to µL/s
    
    handler.aspirate_viscous(
        75, tube_rack['A1'], 
        liquid_name="Glycerol 90%",
        aspiration_rate=aspiration_rate
    )
    
    handler.dispense_viscous(
        75, plate['E5'],
        liquid_name="Glycerol 90%", 
        dispense_rate=dispense_rate
    )

Key Features

  • Optimized Parameters: Uses CSV-based lookup tables for proven liquid/pipette combinations
  • Fallback Support: Falls back to liquidlib-calculated parameters if CSV data isn't available
  • Flexible Override: Allows explicit parameter overrides for fine-tuning
  • Temperature Awareness: Integrates with liquidlib's temperature-dependent property interpolation
  • Robot-Specific: Optimized for Opentrons pipetting robots and their specific capabilities

Parameter CSV Format

The OpentronsLiquidHandler expects a CSV file with the following columns:

  • Pipette: Pipette model (e.g., "P300")
  • Liquid: Liquid name (e.g., "Glycerol 90%")
  • Aspiration Rate (µL/s): Optimal aspiration rate
  • Aspiration Delay (s): Delay after aspiration
  • Aspiration Withdrawal Rate (mm/s): Tip withdrawal speed
  • Dispense Rate (µL/s): Optimal dispense rate
  • Dispense Delay (s): Delay after dispensing
  • Blowout Rate (µL/s): Blowout rate
  • Touch tip: Whether to touch tip (Yes/No)

See the examples/opentrons_example.py file for a complete working example.

Creating a Specialized Liquid Class

You can create custom liquid classes by inheriting from the Liquid base class. This is useful for defining specific types of liquids with predefined properties or additional functionality.

Here's an example of creating a specialized liquid class for a specific use case - Berkeley Hot Summer Glycerin, which needs to account for higher ambient temperatures:

from liquidlib import Liquid

class BerkeleyHotHotSummerGlycerin(Liquid):
    def __init__(self, lab_temperature=35.0):  # Higher default temperature for hot summer
        super().__init__(
            # Physical properties at 20°C and 25°C
            vapor_pressure_20c=0.0001,    # Very low vapor pressure
            vapor_pressure_25c=0.0002,    # Still very low at higher temp
            density_20c=1.261,           # High density
            density_25c=1.258,           # Slightly lower at higher temp
            surface_tension_20c=63.4,    # High surface tension
            surface_tension_25c=62.5,    # Slightly lower at higher temp
            viscosity_20c=1412,          # Very high viscosity
            viscosity_25c=934,           # Significantly lower at higher temp
            lab_temperature=lab_temperature
        )

# Create an instance for a hot Berkeley summer day
glycerin = BerkeleyHotHotSummerGlycerin(lab_temperature=38.0)

# The liquid handling parameters automatically adapt to the physical properties
print(f"Current lab temperature: {glycerin._lab_temp}°C")
print(f"Interpolated viscosity: {glycerin.viscosity} mPa·s")
print(f"Adapted aspirate speed: {glycerin.handling.aspirate_speed}")
print(f"Adapted dispense speed: {glycerin.handling.dispense_speed}")
print(f"Adapted trailing air gap: {glycerin.handling.trailing_air_gap}")

The key advantage of this approach is that the LiquidHandling parameters automatically adapt to the physical properties of the liquid. For example:

  • Higher viscosity leads to slower aspirate/dispense speeds
  • Higher surface tension affects the trailing air gap
  • Temperature changes automatically update all interpolated properties
  • The handling parameters are optimized for the specific liquid's characteristics

Development

To set up the development environment:

# Clone the repository
git clone https://github.com/yourusername/liquidlib.git
cd liquidlib

# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install development dependencies
pip install -e ".[dev]"

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published