测试各种 LLM 模型的集合之地,探索各种工程化的可能性。
Use uv for package management
推荐创建虚拟环境 venv
uv venv --python 3.12
安装包 package install: uv sync
- agno agent framework usage
- Agent Class - agent->agno-usage->concept->agent->agent.ipynb
- Five levels of agentic systems
- Level 1: Agents with tools and instructions - agent->agno-usage->five-level->1_tools_instructions.ipynb
- Writing your own tools
- Stock agent
- Exceptions
- Hooks
- Human in the loop
- Tool kits
- MCP
- Writing your own toolkit
- Selecting tools
- Async tools
- Tool Result Caching
- Writing your own tools
- Level 2: Agents with knowledge and storage
- Level 3: Agents with memory and reasoning
- Level 4: Teams of Agents with collaboration and coordination
- Level 5: Multi-Agent Workflows with state and determinism
- Level 1: Agents with tools and instructions - agent->agno-usage->five-level->1_tools_instructions.ipynb
- web search agent use Tavily API
- deer flow deep researcher
- gpt deep researcher
- agno python agent framework
- sequential thinking GitHub repository
- skyWork mock agentic seek deep researcher
- langGraph multi agent system
- chainlit cook book
- csv\pandas\sql agent
- langchain usage
- claude prompt
- chainlit weather agent, auto inject function description, and use light llm correct unstructured output format
- instructor prompt engineering
- MCP client
- MCP server
- Langchain 这样的框架可以用来提供快速化产品构建,整合资源是产品快速构建的第一手段
- 对于构建 Agent ,先从 prompt 开始,从 jupyter notebook 开始,逐步完善,最后整合到 .py 文件,再到 UI 界面
- 对话式的 UI 都可以优先使用 chainlit,然后是 streamlit,再然后是 taipy,最后是其他的 UI 框架