TCP - Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline
Check origin repo from fork, here is for kin comparison
git clone https://github.com/Kin-Zhang/TCP.git
cd TCP
docker build -t zhangkin/tcp .
Download our dataset through GoogleDrive transfuser to server:
rsync -rvzc --progress -e 'ssh -p xx' --progress /home/kin/DATA_HDD/tcp_data/tcp_carla_data kinzhang@xx:~/datarun docker only for training, download their own dataset
docker run -it --gpus all -v /dev/shm:/dev/shm -v /home/kin/DATA_HDD/tcp_data/tcp_carla_data:/home/kin/tcp/data --name kin_tcp zhangkin/tcp /bin/zshFirst, set the dataset path in TCP/config.py.
Training:
python TCP/train.py --gpus NUM_OF_GPUS
First, launch the carla server,
cd CARLA_ROOT
./CarlaUE4.sh --world-port=2000 -opengl
Set the carla path, routes file, scenario file, and data path for data generation in leaderboard/scripts/data_collection.sh.
Start data collection
sh leaderboard/scripts/data_collection.sh
After the data collecting process, run tools/filter_data.py and tools/gen_data.py to filter out invalid data and pack the data for training.
First, launch the carla server,
cd CARLA_ROOT
./CarlaUE4.sh --world-port=2000 -opengl
Set the carla path, routes file, scenario file, model ckpt, and data path for evaluation in leaderboard/scripts/run_evaluation.sh.
Start the evaluation
sh leaderboard/scripts/run_evaluation.sh
