Skip to content

EricSchles/DataScienceBootCamp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#Data Science Boot Camp 2014 Fall

This boot camp demo and lecture details all the things you need to know to get up and running on your path to becoming a total badass.

#Helpful general resources and links:

https://www.kaggle.com/ --data science competitions

http://www.topcoder.com/ --more competitions in data science

http://www.metacademy.org/ --a reference for learning data science

https://www.coursera.org/course/datascitoolbox --a course on the tools of being a data scientist

#Data science specific references and links: http://www.kdnuggets.com/2014/01/tutorial-data-science-python.html --Data science in detail

http://www.infochimps.com/ --how to cheat

http://misoproject.com/dataset/examples.html --how to visualize

https://snap.stanford.edu/data/

https://snap.stanford.edu/data/#socnets --another great dataset

http://www.pewinternet.org/datasets/pages/2/ --potentially interesting datasets

http://web.stanford.edu/class/cs124/lec/naivebayes.pdf

https://github.com/datumbox/NaiveBayesClassifier/tree/master/src/com/datumbox/opensource/dataobjects --how to implement

http://guidetodatamining.com/chapter-6/ --intro to data mining

http://www.cs.nyu.edu/~mohri/mlu/mlu_lecture_1.pdf --courant intro to data science

http://stackoverflow.com/questions/101268/hidden-features-of-python --the extra stuff in python that gets mentioned less but is still useful

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages