Skip to content

Implementation of paper: SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification

Notifications You must be signed in to change notification settings

DreamStudioAI/sim_gan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification

Pytorch implementation of SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification

Usage

To train a SimDCGAN on the MIT-BIH training data:

$ python3 sim_gan/gan_models/train_sim_gan.py --GAN_TYPE <gan_type> --MODEL_DIR <model_dir> --BEAT_TYPE <beat_type> --BATCH_SIZE <batch_size> --NUM_ITERATIONS <num_iterations>

Where gan_type is one of the strings: {SimDCGAN, SimVGAN}

To train a Regular VanillaGAN or DCGAN on the MIT-BIH training data:

$ python3 sim_gan/gan_models/train_gan.py --GAN_TYPE <gan_type> --MODEL_DIR <model_dir> --BEAT_TYPE <beat_type> --BATCH_SIZE <batch_size> --NUM_ITERATIONS <num_iterations>

Where gan_type is one of the strings: {DCGAN, VGAN}

Authors

Tomer Golany, Daniel Freedman and Kira Radinsky

About

Implementation of paper: SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages