Skip to content

Debrove/RMRKD

Repository files navigation

RMRKD: Region-aware mutual relational knowledge distillation for semantic segmentation

Environment

  1. Clone our repo and create conda environment.
git clone https://github.com/Debrove/RMRKD.git && cd RMRKD
conda create -n rmrkd python=3.8
conda activate rmrkd
  1. Install Pytorch and other dependencies Please refer MMSegmentation for detail installation.
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install openmim
mim install mmcv-full==1.7.0
mim install mmsegmentation==0.29.1
pip install -r requirements.txt

Dataset

Please follow MMSegmentation to prepare datasets.

Train

#single GPU
python tools/train.py configs/distillers/rmrkd/psp_r101_distill_psp_r18_40k_512x512_city.py

#multi GPU
bash tools/dist_train.sh configs/distillers/rmrkd/psp_r101_distill_psp_r18_40k_512x512_city.py 8

Transfer

# Tansfer the RMRKD model into mmseg model
python pth_transfer.py --mgd_path $ckpt --output_path $new_mmseg_ckpt

Test

#single GPU
python tools/test.py configs/pspnet/pspnet_r18-d8_512x512_40k_cityscapes.py $new_mmseg_ckpt --eval mIoU

#multi GPU
bash tools/dist_test.sh configs/pspnet/pspnet_r18-d8_512x512_40k_cityscapes.py $new_seg_ckpt 8 --eval mIoU

Results on CityScapes

Teacher Student Baseline(mIoU) +RMRKD(mIoU) config
PspNet-R101 PspNet-R18 69.37 75.72 config
PspNet-R101 DeepLabV3-R18 73.37 76.72 config
DeepLabV3 plus-R101 MobileNetV2 73.76 76.87 config
DeepLabV3-R101 MobileNetV2 73.11 76.32 config

Results on Pascal VOC

Teacher Student Baseline(mIoU) +RMRKD(mIoU) config
PspNet-R101 PspNet-R18 70.52 74.64 config
PspNet-R101 DeepLabV3-R18 71.60 74.97 config

Acknowledgements

Our code is based on MMSegmentation, MGD, CIRKD. Many thanks to these great works and open-source codebases.

Citation

@article{zheng2025region,
  title={Region-aware mutual relational knowledge distillation for semantic segmentation},
  author={Zheng, Haowen and Lin, Xuxin and Liang, Hailun and Zhou, Benjia and Liang, Yanyan},
  journal={Pattern Recognition},
  volume={161},
  pages={111319},
  year={2025},
  publisher={Elsevier}

About

[PR 2025] Region-aware mutual relational knowledge distillation for semantic segmentation

Resources

License

Stars

Watchers

Forks

Languages