gcc > 5
- Create a new env python version == 3.6.
- Install bazel
git clone https://github.com/tensorflow/tensorflow.gitand checkout to r1.13./configurebazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_packagebazel-bin/tensorflow/tools/pip_package/build_pip_package path/to/install/tf/whl- Install the whl to your env.
-
export LD_LIBRARY_PATH=path/to/nccl/lib:path/to/mpi/lib:$LD_LIBRARY_PATH -
git clone https://github.com/openai/blocksparse.git -
change the Makefile as follows:
- set
-D_CLIBCXX_USE_CXX11_ABI=1inCCFLAGSandNVCCFLAG - set
CUDA_HOME NCCL_HOME MPI_HOME - add
-gencode=arch=compute_75,code=compute_75toNVCCFLAG(specific to RTX 2080)
- set
you may also need to remove some code in matmul_op_gpu.cu.
- comment out the code with
mma_syncprimtives in about line 262 - change
matmul_op_gpu.cu:318toif (false).
In the new env with tensorflow installed
make compileandpip install dist/*.whl
checkout https://github.com/openai/blocksparse#readme when you after this.