Skip to content

CML00/MoDiv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge Distillation with Multi-Objective Divergence Learning

This code repository includes the source code for the Paper "Knowledge Distillation with Multi-Objective Divergence Learning":

Datasets

  • CIFAR10
  • CIFAR100

Networks

  • Resnet-20
  • Resnet-110

Requirements and References

The code uses the following Python packages and they are required: tensorboardX, pytorch, click, numpy, torchvision, tqdm, scipy, Pillow

The code is only tested in Python 3.7 using Anaconda environment.

We adapt and use some code snippets from:

Usage

To train a model, use the command:

python train_baseline.py
--data_name=cifar10/cifar100
--net_name=resnet20/resnet110
--num_class=10/100
python train_st.py
--t_model=/path/to/your/teacher_model 
--s_init=/path/to/your/student_initial_model 
--data_name=cifar10/cifar100  
--t_name=resnet20/resnet110 
--s_name=resnet20/resnet110 
--num_class=10/100

Contact

For any question, you can contact mathshenli@gmail.com

Citation

If you use this codebase or any part of it for a publication, please cite:

Knowledge Distillation with Multi-Objective Divergence Learning
Tian Ye, Chen Meiling, Shen Li, Jiang Bo, Li Zhifeng
IEEE Signal Processing Letters 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages