Skip to content

๐Ÿ” Data Science Project using Python ๐Ÿ“Š Built predictive models using Pandas, NumPy, and Scikit-learn ๐Ÿงน Performed data cleaning, feature engineering & EDA ๐Ÿค– Trained ML models to improve accuracy and automate insights ๐Ÿ“ˆ Designed interactive visualizations using Matplotlib & Seaborn.

Notifications You must be signed in to change notification settings

Ashwin18-Offcl/Practice-All-Python-Topics-In-Data-Science

Repository files navigation

๐Ÿ Practice All Python Topics in Data Science

Python Data Science Roadmap


About This Repository

This repository is a complete step-by-step roadmap to master Python for Data Science, starting from basic programming concepts and moving towards advanced Machine Learning and Deep Learning.

It is built to:

  • Strengthen Python fundamentals
  • Practice Data Science tools hands-on
  • Apply concepts to real-world use cases
  • Showcase structured learning and consistency

๐ŸŽฏ Objective & Purpose

โœ… Objectives

  • Master Python from basic to advanced
  • Learn how Python is used in real Data Science workflows
  • Build a strong portfolio-ready foundation
  • Prepare for interviews, projects, and competitions

โœ… Purpose

  • One-stop structured learning resource
  • Daily practice & revision guide
  • Demonstrate discipline and growth in Data Science

๐Ÿงญ Learning Strategy

This repository follows a progressive learning strategy:

  1. Understand Concepts
  2. Practice with Code
  3. Apply to Real Data
  4. Build Projects

Each topic includes:

  • Concept explanation
  • Python implementation
  • Practical relevance

๐Ÿ—‚๏ธ Learning Structure (Basic โ†’ Advanced)


๐Ÿ”น 1. Python Basics

What to Learn

  • Variables & Data Types
  • Input / Output
  • Type Casting
  • Operators

Objective

  • Build logical thinking
  • Understand Python syntax clearly

Real-World Use

  • Writing automation scripts
  • Data preprocessing logic

๐Ÿ”น 2. Data Structures

What to Learn

  • List
  • Tuple
  • Set
  • Dictionary

Objective

  • Efficient data storage & access

Real-World Use

  • Feature storage
  • Dataset manipulation

๐Ÿ”น 3. Control Flow

What to Learn

  • if / else
  • for & while loops
  • break & continue
  • Comprehensions

Objective

  • Control program execution

Real-World Use

  • Conditional data filtering
  • Iterative processing

๐Ÿ”น 4. Functions & Modules

What to Learn

  • Functions
  • Lambda
  • Modules & Packages

Objective

  • Reusable & clean code

Real-World Use

  • Data pipelines
  • Utility functions

๐Ÿ”น 5. Object-Oriented Programming (OOP)

What to Learn

  • Classes & Objects
  • Inheritance
  • Polymorphism
  • Encapsulation

Objective

  • Scalable project design

Real-World Use

  • ML pipelines
  • Custom dataset classes

๐Ÿ”น 6. NumPy (Numerical Computing)

What to Learn

  • Arrays
  • Indexing & slicing
  • Broadcasting
  • Vector operations

Objective

  • Fast numerical computation

Real-World Use

  • Mathematical modeling
  • Feature transformation

๐Ÿ”น 7. Pandas (Data Analysis)

What to Learn

  • Series & DataFrame
  • Filtering & sorting
  • GroupBy
  • Merge & Join

Objective

  • Data analysis mastery

Real-World Use

  • Exploratory Data Analysis (EDA)
  • Business insights

๐Ÿ”น 8. Data Cleaning & Preprocessing

What to Learn

  • Missing value handling
  • Outlier detection
  • Encoding
  • Scaling

Objective

  • Prepare high-quality data

Real-World Use

  • Industry datasets
  • ML-ready data

๐Ÿ”น 9. Data Visualization

What to Learn

  • Matplotlib
  • Seaborn
  • Plot types

Objective

  • Visual storytelling

Real-World Use

  • Dashboards
  • Reports & presentations

๐Ÿ”น 10. Statistics & Probability

What to Learn

  • Mean, Median, Mode
  • Variance & Std Dev
  • Probability
  • Hypothesis Testing

Objective

  • Analytical thinking

Real-World Use

  • A/B testing
  • Model assumptions

๐Ÿ”น 11. Machine Learning

What to Learn

  • Supervised Learning
    • Linear Regression
    • Logistic Regression
    • Decision Trees
  • Unsupervised Learning
    • Clustering
    • PCA

Objective

  • Predictive modeling

Real-World Use

  • Sales prediction
  • Customer segmentation

๐Ÿ”น 12. Model Evaluation

What to Learn

  • Train-Test Split
  • Cross Validation
  • Metrics

Objective

  • Reliable model evaluation

Real-World Use

  • Model comparison
  • Performance optimization

๐Ÿ”น 13. Deep Learning

What to Learn

  • Artificial Neural Networks
  • CNN
  • RNN

Objective

  • Advanced AI skills

Real-World Use

  • Image classification
  • NLP & time series

๐Ÿ”น 14. Real-World Projects

What to Build

  • EDA Projects
  • ML Projects
  • DL Projects

Objective

  • Hands-on experience
  • Portfolio building

Summary

โœ” Covers complete Python Data Science roadmap
โœ” Beginner-friendly โ†’ Advanced level
โœ” Focus on practice + application
โœ” Ideal for students, job seekers & professionals


flowchart TD

%% ========== PYTHON CORE ==========
A["๐Ÿ Python Basics<br/>int, float, str<br/>print(), input()"] --> B["๐Ÿ“ฆ Data Structures<br/>list, tuple, set, dict"]
B --> C["๐Ÿ” Control Flow<br/>if-else, for, while"]
C --> D["๐Ÿงฉ Functions<br/>def, lambda"]
D --> E["๐Ÿงฑ OOP<br/>class, object"]

%% ========== DATA HANDLING ==========
E --> F["๐Ÿ“Š NumPy<br/>arrays, reshape"]
F --> G["๐Ÿ—ƒ Pandas<br/>DataFrame, Series"]
G --> H["๐Ÿงน Data Cleaning<br/>NaN, duplicates"]

%% ========== VISUALIZATION ==========
H --> I["๐Ÿ“ˆ Visualization<br/>bar, line, scatter"]

%% ========== STATISTICS ==========
I --> J["๐Ÿงฎ Statistics<br/>mean, std, probability"]

%% ========== MACHINE LEARNING ==========
J --> K["๐Ÿค– Machine Learning<br/>Regression, Classification"]
K --> L["โš™๏ธ Evaluation<br/>accuracy, confusion matrix"]

%% ========== DEEP LEARNING ==========
L --> M["๐Ÿง  Deep Learning<br/>ANN, CNN, RNN"]

%% ========== PROJECTS ==========
M --> N["๐Ÿš€ Projects<br/>EDA, ML, DL"]

%% ========== DARK UI STYLES ==========
classDef core fill:#0D47A1,color:#ffffff,stroke:#42A5F5,stroke-width:3px;
classDef data fill:#1B5E20,color:#ffffff,stroke:#66BB6A,stroke-width:3px;
classDef viz fill:#E65100,color:#ffffff,stroke:#FFB74D,stroke-width:3px;
classDef stats fill:#4A148C,color:#ffffff,stroke:#BA68C8,stroke-width:3px;
classDef ml fill:#B71C1C,color:#ffffff,stroke:#EF5350,stroke-width:3px;
classDef dl fill:#880E4F,color:#ffffff,stroke:#F06292,stroke-width:3px;
classDef proj fill:#3E2723,color:#ffffff,stroke:#A1887F,stroke-width:3px;

class A,B,C,D,E core
class F,G,H data
class I viz
class J stats
class K,L ml
class M dl
class N proj


Loading

๐Ÿ”— Connect With Me


About

๐Ÿ” Data Science Project using Python ๐Ÿ“Š Built predictive models using Pandas, NumPy, and Scikit-learn ๐Ÿงน Performed data cleaning, feature engineering & EDA ๐Ÿค– Trained ML models to improve accuracy and automate insights ๐Ÿ“ˆ Designed interactive visualizations using Matplotlib & Seaborn.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published