INEapy is a comprehensive Python library designed to provide seamless access to data from the Spanish National Statistics Institute (INE). The library is structured into two primary modules: ine_wrapper and ine_consultor, each serving distinct purposes to cater to different user needs.
If you want to access to the API's details, you can check it's documentation.
from ineapy import INEConsultor
import pandas as pd
# Initialize the consultant
consultor = INEConsultor()
# Get the latest CPI data
cpi_data = consultor.get_series_data("IPC277517", nult=12)
df = pd.DataFrame(cpi_data)
print(df.head())To install INEapy, simply run the following command:
pip install ineapyINEapy offers a robust interface for interacting with the INE's extensive data offerings. Whether you need low-level access to the API or a more abstracted, user-friendly interface, INEapy has you covered.
- 🔗 Direct API Access: Low-level wrapper for complete control
- 🎯 High-Level Interface: Simplified methods for common tasks
- 🌍 Multi-language Support: Available in Spanish (ES) and English (EN)
- 📊 Pandas Integration: Automatic datetime conversion and DataFrame-ready output
- ⚡ Efficient Pagination: Handle large datasets with built-in pagination
- ✅ Parameter Validation: Comprehensive input validation to prevent errors
- 🛡️ Error Handling: Robust error handling with informative messages
INEapy
├── INEWrapper (Low-level API access)
│ ├── Direct HTTP requests to INE endpoints
│ ├── Raw JSON responses
│ └── Full parameter control
└── INEConsultor (High-level interface)
├── Simplified method names
├── Processed data structures
└── Pandas-ready outputs
The ine_wrapper module provides a direct and low-level interface with the INE API, allowing users to perform HTTP requests to various endpoints with precision and control.
- Comprehensive access to all available operations in the INE API
- Rigorous parameter validation to ensure data integrity
- Efficient pagination handling for large datasets
- Multi-language support (ES/EN) for broader accessibility
from ineapy import INEWrapper
# Initialize the wrapper (default in Spanish)
wrapper = INEWrapper()
# Initialize the wrapper in English
wrapper_en = INEWrapper(language="EN")get_operation(cod_operation, det, tip): Retrieve detailed information about a statistical operation.get_available_operations(det, tip, geo): Access the list of available operations.get_operation_publications(cod_operation, det, tip): Fetch publications associated with a specific operation.get_variables(): Access the complete list of variables available in the system.get_operation_variables(cod_operation, det, tip): Retrieve variables associated with a specific operation.get_variable_values(id_variable, det, tip): Obtain possible values for a given variable.get_series(cod_serie, det, tip): Access information about a specific series.get_series_data(cod_serie, nult, date, det, tip): Retrieve data from a specific series.get_metadata_operation_data(cod_operation, filters, p, det, tip, nult, date): Fetch data with metadata for an operation.get_operation_tables(cod_operation, det, tip): Access tables associated with a specific operation.get_table_groups(id_table, det, tip): Retrieve groups of a table.get_table_group_values(id_table, id_grupo, det, tip): Obtain values of a table group.get_table_data(id_table, nult, date, det, tip, filters): Retrieve data from a specific table.
det: Detail level (0, 1, or 2)tip: Response type ("", "A", "M", "AM")- "": Normal response
- "A": Friendly response
- "M": Includes metadata
- "AM": Friendly with metadata
nult: Number of latest data points to retrievedate: Date filter in the format "yyyymmdd:yyyymmdd"filters: List of filters in the format "id_variable:id_value"
from ineapy import INEWrapper
# Initialize the wrapper
wrapper = INEWrapper()
# List available operations
response = wrapper.get_available_operations(det=0, tip="")
operations = response.json()
# Get information about an operation
response = wrapper.get_operation("IPC", det=0, tip="M")
data = response.json()
# Get data from a series
response = wrapper.get_series_data("IPC277517", nult=12)
series_data = response.json()The ine_consultor module offers a high-level abstraction over ine_wrapper, simplifying access to INE data and enhancing data manipulation capabilities.
- Simplified interface for streamlined data access
- Automatic conversion of responses to more manageable formats
- Comprehensive methods for listing and querying operations, variables, and series
from ineapy import INEConsultor
# Initialize the consultant (default in Spanish)
consultor = INEConsultor()
# Initialize the consultant in English
consultor_en = INEConsultor(language="EN")list_operations(filter_geo): List available operations.get_operation_info(cod_operation): Retrieve information about a specific operation.list_variables(cod_operation): List available variables, either general or specific to an operation.list_periodicities(): List available periodicities.list_filters_from_variable(id_variable): List values for a specific variable.list_filters_from_variable_operation(cod_operation, id_variable): List values for a variable within an operation.get_series_info(cod_serie): Retrieve detailed information about a series.get_series_data(cod_serie, nult, date): Access data from a specific series.get_operation_data(cod_operation, filters, p, date, nult): Retrieve data from an operation with specified filters.list_groups_from_table(id_table): List groups within a table.list_filters_from_table(id_table): List available filters for a table.get_table_data(id_table, nult, date, filters): Access data from a specific table.
from ineapy import INEConsultor
import pandas as pd
# Initialize the consultant
consultor = INEConsultor()
# List available operations
operations = consultor.list_operations()
# Get information about the IPC operation
operation_info = consultor.get_operation_info("IPC")
# List variables for an operation
variables = consultor.list_variables("IPC")
# Get data from a series with the last 12 values
data = consultor.get_series_data("IPC277517", nult=12)
# Convert to pandas DataFrame
df = pd.DataFrame(data)- INE Official API Documentation - Complete API reference and technical specifications
- INE Data Catalog - Browse all available datasets and statistics
Contributions to INEapy are highly encouraged. To contribute, please:
- Fork the repository
- Create a branch for your feature
- Commit your changes
- Push to the branch
- Open a Pull Request
By following these steps, you can help enhance the functionality and usability of INEapy for the community.