TransPort-PH is a machine learning and causal inference framework for analyzing transportation policies, forecasting congestion, and evaluating economic impacts in the Philippines and globally.
- Forecasting: Temporal Fusion Transformer (TFT) for multi-horizon time series predictions.
- Causal Analysis: DoWhy framework for robust policy impact assessment.
- Simulation: Counterfactual scenarios for "what-if" analysis.
- Interactive Dashboard: Streamlit-based tool for visualization.
- Rich Data: Integrates World Bank, DPWH, and other sources (7,430+ observations).
git clone https://github.com/Acteus/TransPort-PH.git
cd TransPort-PH
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txtRun Dashboard (Visualization & Analysis)
streamlit run src/visualization/dashboard_app.pyRun Full Pipeline (Data Collection -> Analysis)
python src/utils/run_all.pysrc/: Main source code (data collection, models, analysis, visualization).data/: Processed datasets (World Bank, etc.).config/: Configuration settings.docs/: Detailed documentation.
Sources: World Bank, DPWH, JICA, LTFRB, PSA, OpenAQ, TomTom.
Methods:
- ML: Temporal Fusion Transformer (TFT)
- Causal: DoWhy (Treatment Effect Estimation)
- Validation: Sensitivity analysis & baseline comparisons (ARIMA, LSTM)
Key Results:
- Significantly expanded data coverage (275 regions).
- TFT model achieves 0.24 validation loss, outperforming baselines.
- Actionable insights on transit investment vs. congestion.
MIT License. See LICENSE.
@software{transport_ph_2024,
title={TransPort-PH: Transportation Policy Analysis for the Philippines},
author={[Your Name]},
year={2024},
url={https://github.com/Acteus/TransPort-PH}
}