@@ -91,6 +91,40 @@ Image processing:
9191 * ndimage
9292
9393
94+ This Talk
95+ ----------
96+
97+ There are a lot of tutorials and documentation out there.
98+
99+ So I'm not going to spend much time on the regualr old "how do you use it" stuff.
100+
101+ Rather, I'm going to cover a bit about the guts and some advanced issues.
102+
103+ This is harder to find expainations for -- and will help you understand what's really going on under the hood.
104+
105+
106+
107+ Array Constructors:
108+ -------------------
109+
110+ From scratch:
111+ * ``ones(), zeros(), empty(), arange(), linspace(), logspace()``
112+
113+ ( Default dtype: ``np.float64`` )
114+
115+ From sequences:
116+ * ``array(), asarray()`` ( Build from any sequence )
117+
118+ From binary data:
119+ * ``fromstring(), frombuffer(), fromfile()``
120+
121+ Assorted linear algebra standards:
122+
123+ ``eye(), diag()``, etc.
124+
125+ demo: ``constructors.ipynb``
126+
127+
94128What is an nd array?
95129--------------------
96130
@@ -128,59 +162,6 @@ Built-in Data Types
128162
129163demo: ``object.ipynb``
130164
131-
132- Compound dtypes
133- --------------
134-
135-
136- * Can define any combination of other types
137- Still Homogeneous: Array of structs.
138- * Can name the fields
139- * Can be like a database table
140- * Useful for reading binary data
141-
142-
143- demo: ``dtypes.ipynb``
144-
145- Array Constructors:
146- -------------------
147-
148- From scratch:
149- * ``ones(), zeros(), empty(), arange(), linspace(), logspace()``
150-
151- ( Default dtype: ``np.float64`` )
152-
153- From sequences:
154- * ``array(), asarray()`` ( Build from any sequence )
155-
156- From binary data:
157- * ``fromstring(), frombuffer(), fromfile()``
158-
159- Assorted linear algebra standards:
160-
161- ``eye(), diag()``, etc.
162-
163- demo: ``constructors.ipynb``
164-
165-
166- Broadcasting:
167- -------------
168-
169- Element-wise operations among two different rank arrays:
170-
171- Simple case: scalar and array:
172- ::
173-
174- In [37]: a
175- Out[37]: array([1, 2, 3])
176- In [38]: a*3
177- Out[38]: array([3, 6, 9])
178-
179-
180- Great for functions of more than one variable on a grid
181-
182- demo: ``broadcasting.ipynb``
183-
184165Slicing -- views:
185166-----------------
186167
@@ -202,25 +183,25 @@ a slice is a "view" on the array -- new object, but shares memory:
202183
203184demo: ``slice.ipynb``
204185
205- Working with compiled code
206- ---------------------------
207186
208- Wrapper around a C pointer to a block of data}
187+ Broadcasting:
188+ -------------
209189
210- * Some code can't be vectorized
211- * Interface with existing libraries
190+ Element-wise operations among two different rank arrays:
212191
213- Tools:
192+ Simple case: scalar and array:
193+ ::
194+
195+ In [37]: a
196+ Out[37]: array([1, 2, 3])
197+ In [38]: a*3
198+ Out[38]: array([3, 6, 9])
214199
215- * C API: you don't want to do that!
216- * Cython: typed arrays
217- * Ctypes
218- * SWIG: numpy.i
219- * Boost: boost array
220- * f2py
221200
201+ Great for functions of more than one variable on a grid
202+
203+ demo: ``broadcasting.ipynb``
222204
223- Example of numpy+cython: http://wiki.cython.org/examples/mandelbrot
224205
225206Text File I/O
226207--------------
@@ -234,6 +215,19 @@ Saving as text (CSV):
234215
235216 * ``np.savetxt()``
236217
218+ Compound dtypes
219+ --------------
220+
221+
222+ * Can define any combination of other types
223+ Still Homogeneous: Array of structs.
224+ * Can name the fields
225+ * Can be like a database table
226+ * Useful for reading binary data
227+
228+
229+ demo: ``dtypes.ipynb``
230+
237231
238232Numpy Persistence:
239233------------------
256250 * pytables
257251
258252
253+ Working with compiled code
254+ ---------------------------
255+
256+ Wrapper around a C pointer to a block of data}
257+
258+ * Some code can't be vectorized
259+ * Interface with existing libraries
260+
261+ Tools:
262+
263+ * C API: you don't want to do that!
264+ * Cython: typed arrays
265+ * Ctypes
266+ * SWIG: numpy.i
267+ * Boost: boost array
268+ * f2py
269+
270+
271+ Example of numpy+cython: http://wiki.cython.org/examples/mandelbrot
272+
259273Other stuff:
260274------------
261275
@@ -269,7 +283,7 @@ Other stuff:
269283 * Linear Algebra
270284 * Statistics
271285
272- (And all of scipy! )
286+ (And all of scipy, pandas, etc. )
273287
274288numpy docs:
275289-----------
0 commit comments