A Model Zoo for Generative Recommendation.
Validation Set Metrics
| Methods | R@5 | R@10 | N@5 | N@10 |
|---|---|---|---|---|
| TIGER (Paper) | 0.0454 | 0.0648 | 0.0321 | 0.0384 |
| TIGER (Ours) | 0.0465 | 0.0721 | 0.0297 | 0.0378 |
| Methods | R@5 | R@10 | N@5 | N@10 |
|---|---|---|---|---|
| TIGER (Paper) | 0.0264 | 0.0400 | 0.0181 | 0.0225 |
| TIGER (Ours) | 0.0266 | 0.0414 | 0.0176 | 0.0224 |
| Methods | R@5 | R@10 | N@5 | N@10 |
|---|---|---|---|---|
| TIGER (Paper) | 0.0521 | 0.0712 | 0.0371 | 0.0432 |
| TIGER (Ours) | 0.0420 | 0.0647 | 0.0280 | 0.0350 |
pip install -r requirements.txt- Amazon Beauty
- Amazon Sports
- Amazon Toys
Data will be automatically downloaded on first run.
RQVAE generates semantic IDs for items using residual quantization.
# Train on Beauty (default)
python genrec/trainers/rqvae_trainer.py config/rqvae/amazon.gin
# Train on other datasets
python genrec/trainers/rqvae_trainer.py config/rqvae/amazon.gin --split sports
python genrec/trainers/rqvae_trainer.py config/rqvae/amazon.gin --split toysTIGER is a generative retrieval model for sequential recommendation.
# Train on Beauty (default)
python genrec/trainers/tiger_trainer.py config/tiger/amazon.gin
# Train on other datasets
python genrec/trainers/tiger_trainer.py config/tiger/amazon.gin --split sports
python genrec/trainers/tiger_trainer.py config/tiger/amazon.gin --split toysNote: TIGER requires a pretrained RQVAE checkpoint. Train RQVAE first.
--split <dataset> # beauty, sports, toys--gin "param=value" # Override any config parameter# Change epochs and batch size
python trainer.py config.gin --gin "train.epochs=200" --gin "train.batch_size=128"
# Set wandb run name
python trainer.py config.gin --gin 'train.wandb_run_name="my_experiment"'If you find this project useful, please cite:
@software{genrec2025,
title = {GenRec: A Model Zoo for Generative Recommendation},
author = {Qi Lu},
year = {2025},
url = {https://github.com/phonism/genrec}
}- TIGER: Recommender Systems with Generative Retrieval
- RQ-VAE-Recommender by Edoardo Botta