|
| 1 | +import multiprocessing |
| 2 | +import numpy as np |
| 3 | + |
| 4 | +_Dataset = None |
| 5 | +_batch_size = None |
| 6 | +_num_negatives = None |
| 7 | +_num_items = None |
| 8 | +_user_input = None |
| 9 | +_item_input = None |
| 10 | +_labels = None |
| 11 | +_index = None |
| 12 | +_num_batch = None |
| 13 | +_batch_length = None |
| 14 | + |
| 15 | + |
| 16 | +def shuffle(dataset, batch_choice, num_negatives): # negative sampling and shuffle the data |
| 17 | + |
| 18 | + global _Dataset |
| 19 | + global _batch_size |
| 20 | + global _num_negatives |
| 21 | + global _num_items |
| 22 | + global _user_input |
| 23 | + global _item_input |
| 24 | + global _labels |
| 25 | + global _index |
| 26 | + global _num_batch |
| 27 | + global _batch_length |
| 28 | + _Dataset = dataset |
| 29 | + _num_negatives = num_negatives |
| 30 | + |
| 31 | + if batch_choice == 'user': |
| 32 | + _num_items, _user_input, _item_input, _labels, _batch_length = _get_train_data_user() |
| 33 | + _num_batch = len(_batch_length) |
| 34 | + return _preprocess(_get_train_batch_user) |
| 35 | + |
| 36 | + else: |
| 37 | + batch_choices = batch_choice.split(":") |
| 38 | + if batch_choices[0] == 'fixed': |
| 39 | + _batch_size = int(batch_choices[1]) |
| 40 | + _num_items, _user_input, _item_input, _labels = _get_train_data_fixed() |
| 41 | + iterations = len(_user_input) |
| 42 | + _index = np.arange(iterations) |
| 43 | + _num_batch = iterations / _batch_size |
| 44 | + return _preprocess(_get_train_batch_fixed) |
| 45 | + else: |
| 46 | + print("invalid batch size !") |
| 47 | + |
| 48 | + |
| 49 | +def batch_gen(batches, i): |
| 50 | + return [(batches[r])[i] for r in range(4)] |
| 51 | + |
| 52 | + |
| 53 | +def _preprocess(get_train_batch): # generate the masked batch list |
| 54 | + user_input_list, num_idx_list, item_input_list, labels_list = [], [], [], [] |
| 55 | + cpu_count = multiprocessing.cpu_count() |
| 56 | + if cpu_count == 1: |
| 57 | + for i in range(_num_batch): |
| 58 | + ui, ni, ii, l = get_train_batch(i) |
| 59 | + user_input_list.append(ui) |
| 60 | + num_idx_list.append(ni) |
| 61 | + item_input_list.append(ii) |
| 62 | + labels_list.append(l) |
| 63 | + else: |
| 64 | + pool = multiprocessing.Pool(cpu_count) |
| 65 | + res = pool.map(get_train_batch, list(range(_num_batch))) |
| 66 | + pool.close() |
| 67 | + pool.join() |
| 68 | + user_input_list = [r[0] for r in res] |
| 69 | + num_idx_list = [r[1] for r in res] |
| 70 | + item_input_list = [r[2] for r in res] |
| 71 | + labels_list = [r[3] for r in res] |
| 72 | + return (user_input_list, num_idx_list, item_input_list, labels_list) |
| 73 | + |
| 74 | + |
| 75 | +def _get_train_data_user(): |
| 76 | + user_input, item_input, labels, batch_length = [], [], [], [] |
| 77 | + train = _Dataset.trainMatrix |
| 78 | + trainList = _Dataset.trainList |
| 79 | + num_items = train.shape[1] |
| 80 | + num_users = train.shape[0] |
| 81 | + for u in range(num_users): |
| 82 | + if u == 0: |
| 83 | + batch_length.append((1 + _num_negatives) * len(trainList[u])) |
| 84 | + else: |
| 85 | + batch_length.append((1 + _num_negatives) * len(trainList[u]) + batch_length[u - 1]) |
| 86 | + for i in trainList[u]: |
| 87 | + # positive instance |
| 88 | + user_input.append(u) |
| 89 | + item_input.append(i) |
| 90 | + labels.append(1) |
| 91 | + # negative instances |
| 92 | + for t in range(_num_negatives): |
| 93 | + j = np.random.randint(num_items) |
| 94 | + while j in trainList[u]: |
| 95 | + j = np.random.randint(num_items) |
| 96 | + user_input.append(u) |
| 97 | + item_input.append(j) |
| 98 | + labels.append(0) |
| 99 | + return num_items, user_input, item_input, labels, batch_length |
| 100 | + |
| 101 | + |
| 102 | +def _get_train_batch_user(i): |
| 103 | + # represent the feature of users via items rated by him/her |
| 104 | + user_list, num_list, item_list, labels_list = [], [], [], [] |
| 105 | + trainList = _Dataset.trainList |
| 106 | + if i == 0: |
| 107 | + begin = 0 |
| 108 | + else: |
| 109 | + begin = _batch_length[i - 1] |
| 110 | + batch_index = list(range(begin, _batch_length[i])) |
| 111 | + np.random.shuffle(batch_index) |
| 112 | + for idx in batch_index: |
| 113 | + user_idx = _user_input[idx] |
| 114 | + item_idx = _item_input[idx] |
| 115 | + nonzero_row = [] |
| 116 | + nonzero_row += trainList[user_idx] |
| 117 | + num_list.append(_remove_item(_num_items, nonzero_row, item_idx)) |
| 118 | + user_list.append(nonzero_row) |
| 119 | + item_list.append(item_idx) |
| 120 | + labels_list.append(_labels[idx]) |
| 121 | + user_input = np.array(_add_mask(_num_items, user_list, max(num_list))) |
| 122 | + num_idx = np.array(num_list) |
| 123 | + item_input = np.array(item_list) |
| 124 | + labels = np.array(labels_list) |
| 125 | + return (user_input, num_idx, item_input, labels) |
| 126 | + |
| 127 | + |
| 128 | +def _get_train_data_fixed(): |
| 129 | + user_input, item_input, labels = [], [], [] |
| 130 | + train = _Dataset.trainMatrix |
| 131 | + num_items = train.shape[1] |
| 132 | + for (u, i) in train.keys(): |
| 133 | + # positive instance |
| 134 | + user_items = [] |
| 135 | + user_input.append(u) |
| 136 | + item_input.append(i) |
| 137 | + labels.append(1) |
| 138 | + # negative instances |
| 139 | + for t in range(_num_negatives): |
| 140 | + j = np.random.randint(num_items) |
| 141 | + while train.has_key((u, j)): |
| 142 | + j = np.random.randint(num_items) |
| 143 | + user_input.append(u) |
| 144 | + item_input.append(j) |
| 145 | + labels.append(0) |
| 146 | + return num_items, user_input, item_input, labels |
| 147 | + |
| 148 | + |
| 149 | +def _get_train_batch_fixed(i): |
| 150 | + # represent the feature of users via items rated by him/her |
| 151 | + user_list, num_list, item_list, labels_list = [], [], [], [] |
| 152 | + trainList = _Dataset.trainList |
| 153 | + begin = i * _batch_size |
| 154 | + for idx in range(begin, begin + _batch_size): |
| 155 | + user_idx = _user_input[_index[idx]] |
| 156 | + item_idx = _item_input[_index[idx]] |
| 157 | + nonzero_row = [] |
| 158 | + nonzero_row += trainList[user_idx] |
| 159 | + num_list.append(_remove_item(_num_items, nonzero_row, item_idx)) |
| 160 | + user_list.append(nonzero_row) |
| 161 | + item_list.append(item_idx) |
| 162 | + labels_list.append(_labels[_index[idx]]) |
| 163 | + user_input = np.array(_add_mask(_num_items, user_list, max(num_list))) |
| 164 | + num_idx = np.array(num_list) |
| 165 | + item_input = np.array(item_list) |
| 166 | + labels = np.array(labels_list) |
| 167 | + return (user_input, num_idx, item_input, labels) |
| 168 | + |
| 169 | + |
| 170 | +def _remove_item(feature_mask, users, item): |
| 171 | + flag = 0 |
| 172 | + for i in range(len(users)): |
| 173 | + if users[i] == item: |
| 174 | + users[i] = users[-1] |
| 175 | + users[-1] = feature_mask |
| 176 | + flag = 1 |
| 177 | + break |
| 178 | + return len(users) - flag |
| 179 | + |
| 180 | + |
| 181 | +def _add_mask(feature_mask, features, num_max): |
| 182 | + # uniformalize the length of each batch |
| 183 | + for i in range(len(features)): |
| 184 | + features[i] = features[i] + [feature_mask] * (num_max + 1 - len(features[i])) |
| 185 | + return features |
0 commit comments