|
| 1 | +import numpy as np |
| 2 | +import tensorflow as tf |
| 3 | +from sklearn.metrics import roc_auc_score |
| 4 | +from layers import Dense,CrossCompressUnit |
| 5 | + |
| 6 | + |
| 7 | +class MKR(object): |
| 8 | + def __init__(self,args,n_users,n_items,n_entities,n_relations): |
| 9 | + self._parse_args(n_users, n_items, n_entities, n_relations) |
| 10 | + self._build_inputs() |
| 11 | + self._build_model(args) |
| 12 | + self._build_loss(args) |
| 13 | + self._build_train(args) |
| 14 | + |
| 15 | + def _parse_args(self, n_users, n_items, n_entities, n_relations): |
| 16 | + self.n_user = n_users |
| 17 | + self.n_item = n_items |
| 18 | + self.n_entity = n_entities |
| 19 | + self.n_relation = n_relations |
| 20 | + |
| 21 | + # for computing l2 loss |
| 22 | + self.vars_rs = [] |
| 23 | + self.vars_kge = [] |
| 24 | + |
| 25 | + def _build_inputs(self): |
| 26 | + self.user_indices = tf.placeholder(tf.int32,[None],'user_indices') |
| 27 | + self.item_indices = tf.placeholder(tf.int32,[None],'item_indices') |
| 28 | + self.labels = tf.placeholder(tf.float32,[None],'labels') |
| 29 | + self.head_indices = tf.placeholder(tf.int32,[None],'head_indices') |
| 30 | + self.tail_indices = tf.placeholder(tf.int32,[None],'tail_indices') |
| 31 | + self.relation_indices = tf.placeholder(tf.int32,[None],'relation_indices') |
| 32 | + |
| 33 | + def _build_model(self,args): |
| 34 | + self._build_low_layers(args) |
| 35 | + self._build_high_layers(args) |
| 36 | + |
| 37 | + |
| 38 | + def _build_low_layers(self,args): |
| 39 | + self.user_emb_matrix = tf.get_variable('user_emb_matrix', [self.n_user, args.dim]) |
| 40 | + self.item_emb_matrix = tf.get_variable('item_emb_matrix', [self.n_item, args.dim]) |
| 41 | + self.entity_emb_matrix = tf.get_variable('entity_emb_matrix', [self.n_entity, args.dim]) |
| 42 | + self.relation_emb_matrix = tf.get_variable('relation_emb_matrix', [self.n_relation, args.dim]) |
| 43 | + |
| 44 | + # [batch_size, dim] |
| 45 | + self.user_embeddings = tf.nn.embedding_lookup(self.user_emb_matrix, self.user_indices) |
| 46 | + self.item_embeddings = tf.nn.embedding_lookup(self.item_emb_matrix, self.item_indices) |
| 47 | + self.head_embeddings = tf.nn.embedding_lookup(self.entity_emb_matrix, self.head_indices) |
| 48 | + self.relation_embeddings = tf.nn.embedding_lookup(self.relation_emb_matrix, self.relation_indices) |
| 49 | + self.tail_embeddings = tf.nn.embedding_lookup(self.entity_emb_matrix, self.tail_indices) |
| 50 | + |
| 51 | + for _ in range(args.L): |
| 52 | + user_mlp = Dense(input_dim=args.dim,output_dim=args.dim) |
| 53 | + tail_mlp = Dense(input_dim=args.dim,output_dim = args.dim) |
| 54 | + cc_unit = CrossCompressUnit(args.dim) |
| 55 | + |
| 56 | + self.user_embeddings = user_mlp(self.user_embeddings) |
| 57 | + self.item_embeddings,self.head_embeddings = cc_unit([self.item_embeddings,self.head_embeddings]) |
| 58 | + self.tail_embeddings = tail_mlp(self.tail_embeddings) |
| 59 | + |
| 60 | + self.vars_rs.extend(user_mlp.vars) |
| 61 | + self.vars_rs.extend(cc_unit.vars) |
| 62 | + self.vars_kge.extend(tail_mlp.vars) |
| 63 | + self.vars_kge.extend(cc_unit.vars) |
| 64 | + |
| 65 | + def _build_high_layers(self,args): |
| 66 | + #RS |
| 67 | + use_inner_product = True |
| 68 | + if use_inner_product: |
| 69 | + self.scores = tf.reduce_sum(self.user_embeddings*self.item_embeddings,axis=1) |
| 70 | + else: |
| 71 | + self.user_item_concat = tf.concat([self.user_embeddings,self.item_embeddings],axis=1) |
| 72 | + for _ in range(args.H - 1): |
| 73 | + rs_mlp = Dense(input_dim = args.dim * 2 , output_dim = args.dim * 2) |
| 74 | + self.user_item_concat = rs_mlp(self.user_item_concat) |
| 75 | + self.vars_rs.extend(rs_mlp.vars) |
| 76 | + |
| 77 | + rs_pred_mlp = Dense(input_dim=args.dim * 2,output_dim=1) |
| 78 | + self.scores = tf.squeeze(rs_pred_mlp(self.user_item_concat)) |
| 79 | + self.vars_rs.extend(rs_pred_mlp) |
| 80 | + |
| 81 | + self.scores_normalized = tf.nn.sigmoid(self.scores) |
| 82 | + |
| 83 | + #KGE |
| 84 | + self.head_relation_concat = tf.concat([self.head_embeddings,self.relation_embeddings],axis=1) |
| 85 | + for _ in range(args.H - 1): |
| 86 | + kge_mlp = Dense(input_dim=args.dim * 2,output_dim = args.dim * 2) |
| 87 | + self.head_relation_concat = kge_mlp(self.head_relation_concat) |
| 88 | + self.vars_kge.extend(kge_mlp.vars) |
| 89 | + |
| 90 | + kge_pred_mlp = Dense(input_dim=args.dim * 2,output_dim = args.dim) |
| 91 | + self.tail_pred = kge_pred_mlp(self.head_relation_concat) |
| 92 | + self.vars_kge.extend(kge_pred_mlp.vars) |
| 93 | + self.tail_pred = tf.nn.sigmoid(self.tail_pred) |
| 94 | + |
| 95 | + self.scores_kge = tf.nn.sigmoid(tf.reduce_sum(self.tail_embeddings * self.tail_pred,axis=1)) |
| 96 | + self.rmse = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(self.tail_embeddings - self.tail_pred),axis=1) / args.dim)) |
| 97 | + |
| 98 | + def _build_loss(self, args): |
| 99 | + # RS |
| 100 | + self.base_loss_rs = tf.reduce_mean( |
| 101 | + tf.nn.sigmoid_cross_entropy_with_logits(labels=self.labels, logits=self.scores)) |
| 102 | + self.l2_loss_rs = tf.nn.l2_loss(self.user_embeddings) + tf.nn.l2_loss(self.item_embeddings) |
| 103 | + for var in self.vars_rs: |
| 104 | + self.l2_loss_rs += tf.nn.l2_loss(var) |
| 105 | + self.loss_rs = self.base_loss_rs + self.l2_loss_rs * args.l2_weight |
| 106 | + |
| 107 | + # KGE |
| 108 | + self.base_loss_kge = -self.scores_kge |
| 109 | + self.l2_loss_kge = tf.nn.l2_loss(self.head_embeddings) + tf.nn.l2_loss(self.tail_embeddings) |
| 110 | + for var in self.vars_kge: |
| 111 | + self.l2_loss_kge += tf.nn.l2_loss(var) |
| 112 | + self.loss_kge = self.base_loss_kge + self.l2_loss_kge * args.l2_weight |
| 113 | + |
| 114 | + def _build_train(self, args): |
| 115 | + self.optimizer_rs = tf.train.AdamOptimizer(args.lr_rs).minimize(self.loss_rs) |
| 116 | + self.optimizer_kge = tf.train.AdamOptimizer(args.lr_kge).minimize(self.loss_kge) |
| 117 | + |
| 118 | + def train_rs(self, sess, feed_dict): |
| 119 | + return sess.run([self.optimizer_rs, self.loss_rs], feed_dict) |
| 120 | + |
| 121 | + def train_kge(self, sess, feed_dict): |
| 122 | + return sess.run([self.optimizer_kge, self.rmse], feed_dict) |
| 123 | + |
| 124 | + def eval(self, sess, feed_dict): |
| 125 | + labels, scores = sess.run([self.labels, self.scores_normalized], feed_dict) |
| 126 | + auc = roc_auc_score(y_true=labels, y_score=scores) |
| 127 | + predictions = [1 if i >= 0.5 else 0 for i in scores] |
| 128 | + acc = np.mean(np.equal(predictions, labels)) |
| 129 | + return auc, acc |
| 130 | + |
| 131 | + def get_scores(self, sess, feed_dict): |
| 132 | + return sess.run([self.item_indices, self.scores_normalized], feed_dict) |
0 commit comments