diff --git a/.github/workflows/python_package.yml b/.github/workflows/python_package.yml index daa092a..e7bb2a9 100644 --- a/.github/workflows/python_package.yml +++ b/.github/workflows/python_package.yml @@ -13,24 +13,28 @@ jobs: strategy: matrix: python-version: ["3.10", "3.11", "3.12"] - steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v3 with: python-version: ${{ matrix.python-version }} - name: Install dependencies run: | - python -m pip install --upgrade pip - pip install flake8 pip install .[test] - - name: Lint with flake8 - run: | - # stop the build if there are Python syntax errors or undefined names - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - name: Test with pytest run: | - pytest \ No newline at end of file + pytest + + ruff: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Ruff Lint + uses: astral-sh/ruff-action@v1 + with: + args: "check --config pyproject.toml" + - name: Ruff Format + uses: astral-sh/ruff-action@v1 + with: + args: "format --diff" \ No newline at end of file diff --git a/.github/workflows/ruff.yml b/.github/workflows/ruff.yml deleted file mode 100644 index b268138..0000000 --- a/.github/workflows/ruff.yml +++ /dev/null @@ -1,8 +0,0 @@ -name: Ruff -on: [push, pull_request] -jobs: - ruff: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v4 - - uses: chartboost/ruff-action@v1 diff --git a/CHANGELOG.md b/CHANGELOG.md index d00ecbc..4396d07 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -6,6 +6,14 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 You should also add project tags for each release in Github, see [Managing releases in a repository](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository). +## [Unreleased] +### Changed +- GitHub workflow for linting and formatting uses ruff as a separate job + +### Removed +- GitHub action to run flake8 for linting in build + + ## [2.0.0] - 2024-05-29 ### Added - Added example auto-built Sphinx documentation in the `docs` folder diff --git a/docs/conf.py b/docs/conf.py index 00e9eb6..1980a01 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -12,17 +12,18 @@ # import os import sys -sys.path.insert(0, os.path.abspath('..')) + +sys.path.insert(0, os.path.abspath("..")) # -- Project information ----------------------------------------------------- -project = 'testdoc' -copyright = '2023, Luke Ruud' -author = 'Luke Ruud' +project = "testdoc" +copyright = "2023, Luke Ruud" +author = "Luke Ruud" # The full version, including alpha/beta/rc tags -release = '0.1' +release = "0.1" # -- General configuration --------------------------------------------------- @@ -30,16 +31,15 @@ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. -extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon" -] +extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon"] # Add any paths that contain templates here, relative to this directory. -templates_path = ['_templates'] +templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. -exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] +exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- @@ -47,9 +47,9 @@ # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # -html_theme = 'alabaster' +html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ['_static'] \ No newline at end of file +html_static_path = ["_static"] diff --git a/notebooks/word_count_prototype.ipynb b/notebooks/word_count_prototype.ipynb index 25fb9a2..02f797b 100644 --- a/notebooks/word_count_prototype.ipynb +++ b/notebooks/word_count_prototype.ipynb @@ -16,7 +16,7 @@ "metadata": {}, "outputs": [], "source": [ - "# This cell imports packages and defines any experimental set-up \n", + "# This cell imports packages and defines any experimental set-up\n", "# Try to make experimental parameters easy for others to to find by including them in a few cells at the beginning of your notebook\n", "import logging\n", "from pathlib import Path\n", @@ -42,45 +42,45 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:cdstemplate.word_count:Adding 181 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 122 word types\n", - "INFO:cdstemplate.word_count:Adding 189 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 105 word types\n", - "INFO:cdstemplate.word_count:Adding 180 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 92 word types\n", - "INFO:cdstemplate.word_count:Adding 192 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 95 word types\n", - "INFO:cdstemplate.word_count:Adding 246 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 83 word types\n", - "INFO:cdstemplate.word_count:Adding 189 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 83 word types\n", "INFO:cdstemplate.word_count:Adding 258 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 82 word types\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 113 word types\n", + "INFO:cdstemplate.word_count:Adding 192 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 111 word types\n", "INFO:cdstemplate.word_count:Adding 204 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 57 word types\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 69 word types\n", + "INFO:cdstemplate.word_count:Adding 181 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 97 word types\n", "INFO:cdstemplate.word_count:Adding 197 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 90 word types\n", - "INFO:cdstemplate.word_count:Adding 180 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 74 word types\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 103 word types\n", + "INFO:cdstemplate.word_count:Adding 189 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 88 word types\n", + "INFO:cdstemplate.word_count:Adding 189 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 79 word types\n", "INFO:cdstemplate.word_count:Adding 182 token(s) case insensitively\n", - "INFO:cdstemplate.word_count:Vocabulary size increased by 66 word types\n" + "INFO:cdstemplate.word_count:Vocabulary size increased by 75 word types\n", + "INFO:cdstemplate.word_count:Adding 180 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 76 word types\n", + "INFO:cdstemplate.word_count:Adding 180 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 69 word types\n", + "INFO:cdstemplate.word_count:Adding 246 token(s) case insensitively\n", + "INFO:cdstemplate.word_count:Vocabulary size increased by 69 word types\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Tokenizing file: ../data/gutenberg/austen-persuasion.txt\n", - "Tokenizing file: ../data/gutenberg/chesterton-ball.txt\n", - "Tokenizing file: ../data/gutenberg/chesterton-brown.txt\n", - "Tokenizing file: ../data/gutenberg/carroll-alice.txt\n", - "Tokenizing file: ../data/gutenberg/bryant-stories.txt\n", - "Tokenizing file: ../data/gutenberg/burgess-busterbrown.txt\n", "Tokenizing file: ../data/gutenberg/blake-poems.txt\n", + "Tokenizing file: ../data/gutenberg/carroll-alice.txt\n", "Tokenizing file: ../data/gutenberg/bible-kjv.txt\n", + "Tokenizing file: ../data/gutenberg/austen-persuasion.txt\n", "Tokenizing file: ../data/gutenberg/chesterton-thursday.txt\n", + "Tokenizing file: ../data/gutenberg/burgess-busterbrown.txt\n", + "Tokenizing file: ../data/gutenberg/chesterton-ball.txt\n", + "Tokenizing file: ../data/gutenberg/austen-emma.txt\n", + "Tokenizing file: ../data/gutenberg/chesterton-brown.txt\n", "Tokenizing file: ../data/gutenberg/austen-sense.txt\n", - "Tokenizing file: ../data/gutenberg/austen-emma.txt\n" + "Tokenizing file: ../data/gutenberg/bryant-stories.txt\n" ] } ], @@ -143,12 +143,12 @@ " \n", " \n", " \n", - " 616\n", + " 52\n", " \"Drop\n", " 1\n", " \n", " \n", - " 91\n", + " 361\n", " \"ELLIOT\n", " 1\n", " \n", @@ -158,12 +158,12 @@ " 1\n", " \n", " \n", - " 475\n", + " 930\n", " \"It's\n", " 2\n", " \n", " \n", - " 484\n", + " 938\n", " \"No,\n", " 1\n", " \n", @@ -173,11 +173,11 @@ ], "text/plain": [ " token count\n", - "616 \"Drop 1\n", - "91 \"ELLIOT 1\n", + "52 \"Drop 1\n", + "361 \"ELLIOT 1\n", "571 \"I 1\n", - "475 \"It's 2\n", - "484 \"No, 1" + "930 \"It's 2\n", + "938 \"No, 1" ] }, "metadata": {}, @@ -222,27 +222,27 @@ " \n", " \n", " \n", - " 29\n", + " 18\n", " the\n", " 127\n", " \n", " \n", - " 10\n", + " 13\n", " of\n", " 72\n", " \n", " \n", - " 38\n", + " 10\n", " and\n", " 62\n", " \n", " \n", - " 16\n", + " 25\n", " a\n", " 43\n", " \n", " \n", - " 162\n", + " 34\n", " to\n", " 38\n", " \n", @@ -252,27 +252,27 @@ " ...\n", " \n", " \n", - " 259\n", + " 576\n", " one\n", " 3\n", " \n", " \n", - " 348\n", + " 154\n", " what\n", " 3\n", " \n", " \n", - " 376\n", + " 184\n", " when\n", " 3\n", " \n", " \n", - " 704\n", + " 275\n", " firmament\n", " 3\n", " \n", " \n", - " 147\n", + " 439\n", " white\n", " 3\n", " \n", @@ -283,17 +283,17 @@ ], "text/plain": [ " token count\n", - "29 the 127\n", - "10 of 72\n", - "38 and 62\n", - "16 a 43\n", - "162 to 38\n", + "18 the 127\n", + "13 of 72\n", + "10 and 62\n", + "25 a 43\n", + "34 to 38\n", ".. ... ...\n", - "259 one 3\n", - "348 what 3\n", - "376 when 3\n", - "704 firmament 3\n", - "147 white 3\n", + "576 one 3\n", + "154 what 3\n", + "184 when 3\n", + "275 firmament 3\n", + "439 white 3\n", "\n", "[100 rows x 2 columns]" ] @@ -325,31 +325,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLMAAANsCAYAAACgTeoWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAClXklEQVR4nOzde5hdZXn///dHTgFCEk4iKhJJoggIUUblqEiptZZWFDyiFfXnFE980eJXq7ZSW1vwLH5FG5XigVoFxQMoYlUkIogznFPwCFYLKiAQwiHBcP/+WCuyM8wpyczszOz367pyzdrPep617mfP7LmYm/t5VqoKSZIkSZIkaTp4SLcDkCRJkiRJksbLZJYkSZIkSZKmDZNZkiRJkiRJmjZMZkmSJEmSJGnaMJklSZIkSZKkacNkliRJkiRJkqYNk1mSJEmTIMmJST67HuOWJTlk4iOaOOs7t8mW5NVJfptkRZLtJ/E+Byf58WRdf2OW5IIk/1+345Ak9TaTWZKkaav9g3XNv/uT3NPx+ugJusfzk/wgyd1JLhjm/OIkg+35wSSLO84lyclJbm3/nZwkI9znkCSV5Owh7fu07Q+69zrO45gk3x+jzwVJ7h3yvu6/IfedSmMlWJL8XZJvDGn76QhtL5ysOMdSVXtW1QWTfZ8kj0zyxSS3JLkjyTVJjpns+44Sz/z2Z33T9Ry/GfB+4BlVNbuqbh3h+mt+tm9I8pb1uVdVLa2qx67P2CExVZKFY/TZOcnHk9zYxv2LJKcn2X2c99goE4/rKsnHOr53q5Lc1/H6G2NfYdhr3pDksImOVZI0+UxmSZKmrfYP1tlVNRv4H+AvO9rOmKDb/B74IHDS0BNJNge+AnwW2Bb4FPCVth2gHzgC2AfYG/hL4G9GudfNwP5DKkpeBvxkg2awbl7X+b5W1cWdJ9c30bCRuBA4IMkm0CQJgM2AJwxpW9j2Hbdp+r58BvgVsCuwPfBS4LddjWjD7ATMApaN0W9e+zvjRcA/JHnm0A4by/ez/V3wA2Ar4GBgG+CJwPeAP+1iaBusTfaP+2+Rqjq24/f9vwCf7/g99eeTF6kkaWNkMkuSNOMk2SLJB9tKhhvb4y3ac4ck+XWSt7YVKTeMVsVVVf9VVV8Abhzm9CHApsAHq2plVZ0CBDi0Pf8y4H1V9euq+l/gfcAxo4S+Cvgy8MI21k2AFwBrJeaSHJDkR201zY+SHNBx7pi2cuPOJNcnOTrJ44CP0STKViS5fZQYHqR9j96c5CrgriSbJtkvTcXa7UmuTMeyuCSPTvK9NoZvJfl/aypD1rz/w1z/sPb4IUnekuTnaarZvpBku/bcmsqalyX5n/b797b23DOBtwIvaOd45TBT+RFN8mpx+/pg4LvAj4e0/byqbkzy8CRfTfL7JD9L8qqOmE9MclaSzyZZDhwzdN7ADh39Z7V9b23fsx8l2WmU9/uwjvt8Icmn2+suS9I3yvfqQ0l+lWR5mkrBg0fqCzwJOL2q7qqqP1TV5VX1jfY6o36fWrOSfL6N67Ik+3T0fXOS/23P/TjJn7TtI35/eSCBeHtGqAoc6bOd5DE038c1478zyrwBaBO1y4C9On4vvDnJb4B/H+lew70/7c/KF5Pc3H7ujus4t0ma3zc/b9+PwSS7JFkz3yvb+b5gmDDfACwHXlpVP6/G7VX171X14eFiadtuSHLYSJ+LJHOTfDLJTe336Z/zQEL3mCTfT/LeJLe18xmaLFqQ5NL25+wrHd9DMvrvhguSvCvJRcDdwG5JntH+jNyR5NT2M7ROyxhHumea35W3JNmlfb1PO6fdk3wGeBTwtfa9+b9Zh8+pJKm7TGZJkmaitwH70SQo9gGeDLy94/zDaBINj6BJOC1Jsj5LhvYErqqq6mi7qm1fc74zqXJlx7mRfBr46/b4z4Br6EiktX80ngucQlNN837g3CTbJ9m6bf/zqtoGOAC4oqquBY4FLm6rGOat60Rpqlj+AphHUwFzLvDPwHbACcAXk+zY9v0PYJDmPf4nmvd4vF5PU832NODhwG3AR4b0OQh4LPAnNJU1j6uq81i7WmOfIWOoqlXAD4Gntk1PBZYC3x/StibJ8J/Ar9s4jgL+JcmhPODZwFk078kZY8z7ZcBcYBea79uxwD3jeD8A/qqNZR7wVeD/jdL3RzQ/99u18ZyZZNYIfS8BPpLkhUkeNc5YOj0bOLPjXl9Osln7WXod8KT25/DPgBvaMaN9f9d8D+YNVxXYGvazXVU/4YHP1ryqOnSYsX+UxoHtmMvb5oe1c9mVpqpyrN8ja671EOBrNJ/vR9D8XB6f5M/aLm+k+fw8C5gDvAK4u6rWzHefdr6fHybUw4Czq+r+0eYzklE+F6cDf6CpQnwC8AygM4H0FJrk4A7Au4FPJmstkf7rdh47t9c5BSDJIxj9dwM0FYD9NFVmd9B8hv6O5nPxY5rfW+M22j2r6gfAvwGfSrIlTRXt31fVdVX1Utau6H03G/Y5lSRNIZNZkqSZ6GjgnVX1u6q6GfhHmj+gOv19W031PZo/hJ6/HveZTfPHWKc7aP5IG+78HcDsIX8UrqX942u7NiHw1zTJrU5/Afy0qj7TVtN8DriOZgkjwP00lSZbVtVNVTXWkquhTmkrEm5Pcllne1X9qqruAV4CfL2qvl5V91fVt4AB4FltUuRJPPD+Xkjzh/54HQu8ra1mWwmcCByVtZd9/WNV3VNVV9IkEB6UuBrF93ggaXIwTTJr6ZC277WVHAcCb66qe6vqCuATPJBohCY5+OU20bAjo8/7Ppo/jhdW1eqqGqyq5eOM+fvte72aZmngiPOtqs9W1a3tz8b7gC1oEn/DeV47978Hrk9yRZInjTMmgMGqOquq7qNJqs6iSf6sbu+7R5LNquqGqvp5O2Y839/RjOezPZZbaJYPfwJ4S1V9u22/H3hH+/27Zx3u9SRgx6p6Z1WtqqpfAB+nrbCkSRK9vap+3FZWXVlD9vMaxQ7Ab9a8SPJX7WfzziTnr+O811xjJ5rE2vFtVd7vgA90xAvwy6r6ePsz9ymapFVnhdJnquqaqrqL5ufn+W1l14i/GzrGnl5Vy6rqD8CfA8uq6kvt61M65ztOY93zRJoE1aXA//Lg5HinDfmcSpKmkMksSdJM9HDglx2vf9m2rXFb+0fYSOfHawVNpUWnOcCdI5yfA6wYUsk1nM/QVLY8HTh7yLmhc6N9/Yh2Ti+gSRjclOTcjHOT6A7HVdW89t8TO9p/1XG8K/C8jqTX7TTVUju38Q33/o7XrsDZHde9liY50vmHdOcfu3fTJA3H60LgoLbCbceq+inNnkQHtG17tX0eDvy+qu7sGPtLmsqbNTrfk7Hm/Rngm8B/plmy9u40G5aPx9D5zhop+ZPkhCTXtku2bqf5I36H4fpW1W1V9Zaq2pPm/b2CprpqxGTrEH+cf5vQ+zXw8Kr6GXA8TRLhd0n+M8maz9d4vr+jGeuzPR47VNW2VfW4apYGr3FzVd27HvfaFXj4kM/DW3lgTrsAPx9m3HjcSvO5AqCqvtpWVr4B2HykQWPYlWa57U0d8f4b8NCOPn/8mauqu9vDzs9Z58/+L9vr7cDovxuGG/tw1v45Kpqfo3Wdz4j3bJOtp9N8tt83xu/fDfmcSpKmkMksSdJMdCPNHzhrPIq197zatl2SN9L58VoG7D3kj/+9eWAD6mWsXUWzD2NvTg3NH1Svoak2uHvIuaFzgyb+/wWoqm9W1Z/S/CF3HU2FCMBYCbSxdI7/FU1lxryOf1tX1UnATQz//q5xF81m1sAf9wXrXIL0K5plkp3XnlXNnmPrEuNILqZJ8LwKuAigrby4sW27saqub19vl2SbjrF/fJ+Hud+o866q+6rqH6tqD5plVIezdpXXBkuzP9b/paky3LZNetxBs4/bqKrqFuC9NMmF7Rj7+wRNkmbN+YcAj6T9HFXVf1TVQTQ/qwWc3HYd7fs7nu/fWJ/tDTH0/uO916+A64fMaZuqelbH+QXrGdO3gSMy+kbpY32vhs7rV8BKmqTemnjntEnN8dql4/hRNBVNtzD674bh4rmJ5udmTezpfD1Oo96zXYb4DuDfgfel3fdsmFim5HMqSZoYJrMkSTPR54C3J9kxyQ7AP9DsldLpH5Ns3iYADqfZ++dB0mzePItmo/eHtBsEr/k/9RfQVJUcl2az6Ne17Ws2n/408MYkj2grU/6WpkJgVG0y5Wk0e/YM9XXgMUlenGYj9hcAewDnJNkpybPbhMpKmsqwNXvt/BZ4ZB540uKG+Czwl0n+bM37k2YT6kdW1S9plviseX8P4oElkNA8mXFWkr9o38e30yxJW+NjwLuS7ArQfg+fPc64fgvMH+0P/3b52ADNPkZLO059v227sO33K5qKrX9t57c38Eoe/HO05rqjzjvJ05M8vk00LKf543+99kEaxTY0+xfdDGya5B94cOXgHyU5Ocle7c/RNsCrgZ+1S+DG+j4B7JvkuW2V2PE0P3OXJHlskkPbpMG9NHsOrZnraN/fm9t+u40yx/F8tifKeO91KXBnms3jt2w/E3vlgSWbnwD+KcmiNPbOA08s/S2jz/f9NE9K/UySBe34bXjggQUw9vdqrc9FVd0EnE+T2JmTZlP+BUmeNv63hpck2SPJVsA7gbPaJYkj/m4Y4TrnAo9PckT7c/Ramr3L1sWI92yTY6cDn6T5/N5Es5/dGmu9/1P0OZUkTQCTWZKkmeifaRILVwFXA5e1bWv8hmbj6RtpNu4+tqquG+FaL6X5Y/yjNPsp3UNb7VTNhuJH0Pyf+9tpNkQ+om2HZunO19oYrqH5w+3fxjOBqvp+VT2oCqRNNBxOkxi7laYS5/C2suYhNAmZG2n2BHoaTYICmgTbMuA3SW4ZTwyjxPYrms2/30qTgPgV8CYe+O+KF9NsIP17moqIT3eMvYOm6uwTNFVOd7H2sqIP0Wxyfn6SO2k2KX/KOENbk5C8NWvv9zXU92iWVH2/o21p23ZhR9uLgPk07+fZNPsp/dco1x1x3jR/oJ9F8wfytW0Mnxl9Ouvsm8B5NMmNX9Ikkn41Sv+taOZ1O/ALmiqkv4JxfZ8AvkKzrPU2ms/Jc9slXVsAJ9FU6vyG5n39u3bMiN/ftgrxXcBFaZaL7TdMzGN9tifSuO7VJnEOp0kwXU8z70/QVABCk5D6Ak0CaTlNYmXL9tyJNJuT357kQfv2tZ/r/Wi+l9+nWcJ8BU3i8tVtn7G+V8N9Lv6aZpnif9N8/85i7aWAY/kMTZLoNzR7pR3XxjLW74bh5vc8mk3mb6VJzA/QJEbHZYx7Hkfz8/f37fLClwMvzwNP+fxXmoTl7UlOYGo+p5KkCZCxt+2QJGnmSPPI9s9W1bouZdF6SnIizYbKL+l2LNJESPNUy09U1WhVVVpHbfXYr4Gjq+q73Y5HkrTxsjJLkiRJWjd70VRhaQO1ywPntctS30qzx9slXQ5LkrSRG+9jkCVJkqSel+RDNMsxX9btWGaI/YH/4IFlj0e0e9tJkjQilxlKkiRJkiRp2nCZoSRJkiRJkqYNlxluoB122KHmz5/f7TAkSZIkSZJmjMHBwVuqasfhzvVEMivJPODFVXVq+xSrE6rq8Im49iO3nsM3Xnn8RFxKkiRJkiRpne346pn30OgkvxzpXK8sM5wHvKbbQUiSJEmSJGnD9ERlFnASsCDJFcB9wF1JzqJ5rPIg8JKqqiT7Au8HZgO3AMdU1U1dilmSJEmSJElD9Epl1luAn1fVYuBNwBOA44E9gN2AA5NsBnwYOKqq9gVOA9413MWS9CcZSDJw64rlUxC+JEmSJEmSoHcqs4a6tKp+DdBWa80Hbqep1PpWEoBNgGGrsqpqCbAEYPGuu9WkRytJkiRJkiSgd5NZKzuOV9O8DwGWVdX+3QlJkiRJkiRJY+mVZYZ3AtuM0efHwI5J9gdIslmSPSc9MkmSJEmSJI1bT1RmVdWtSS5Kcg1wD/DbYfqsSnIUcEqSuTTvzQeBZaNde9Mdt5uRj8CUJEmSJEnaGKXKLZ+Gk+Q44NXAZVV19Ej9Fu/66PrWW94xdYFJkiT1kB1ffUy3Q5AkSV2QZLCq+oY71xOVWevpNcBhazaKlyRJkiRJUvf1yp5Zo0ryxiTXtP+OT/IxYDfgG0ne0O34JEmSJEmS1Oj5yqwk+wIvB55C80TDHwIvAZ4JPL2qbulieJIkSZIkSepgZRYcBJxdVXdV1QrgS8DBow1I0p9kIMnArSvunJIgJUmSJEmSZDJrvVTVkqrqq6q+7Wdv0+1wJEmSJEmSeobJLFgKHJFkqyRbA89p2yRJkiRJkrSR6fk9s6rqsiSnA5e2TZ+oqsuTjGv8pjtu7yOjJUmSJEmSpkjPJ7MAqur9wPuHtM3vTjSSJEmSJEkaicmsUSRZUVWzR+vzh5tv5uaPLZmqkCRJ0kZux2P7ux2CJEnSjOaeWZIkSZIkSZo2ZnwyK8mXkwwmWZakv21bkeRdSa5MckmSndr2Rye5OMnVSf65u5FLkiRJkiRpqBmfzAJeUVX7An3AcUm2B7YGLqmqfYALgVe1fT8EfLSqHg/cNNIFk/QnGUgycOuKFZMcviRJkiRJktbohWTWcUmuBC4BdgEWAauAc9rzg8D89vhA4HPt8WdGumBVLamqvqrq2372qFtqSZIkSZIkaQLN6A3gkxwCHAbsX1V3J7kAmAXcV1XVdlvN2u9DIUmSJEmSpI3SjE5mAXOB29pE1u7AfmP0vwh4IfBZ4Ojx3GDTHXf0qUWSJEmSJElTZKYvMzwP2DTJtcBJNEsNR/N/gNcmuRp4xGQHJ0mSJEmSpHWTB1bbaX0s3vVRdf7f/d9uhyFJGuKhx76u2yFIkiRJWk9JBquqb7hzM70yS5IkSZIkSTOIyaxhJPlyksEky5K4IZYkSZIkSdJGYqZvAL++XlFVv0+yJfCjJF+sqlvXnGwTXP0Aj9xu227FKEmSJEmS1HOszBrecUmupNkwfhdgUefJqlpSVX1V1bf97NldCVCSJEmSJKkXWZk1RJJDgMOA/avq7iQXALO6GZMkSZIkSZIaJrMebC5wW5vI2h3Yb7TOm+74UJ+YJUmSJEmSNEVcZvhg5wGbJrkWOIlmqaEkSZIkSZI2Aj1fmZVkHvDiqjoVoKpWAn8+3vH33fxbfvvR901SdJK08dnp1X/b7RAkSZIk9TArs2Ae8JpuByFJkiRJkqSx9XxlFs1SwgVJrgC+1bb9OVDAP1fV57sVmCRJkiRJktZmZRa8Bfh5VS2m2R9rMbAPzRMN35Nk56EDkvQnGUgy8PsVd01lrJIkSZIkST3NZNbaDgI+V1Wrq+q3wPeAJw3tVFVLqqqvqvq2m731lAcpSZIkSZLUq0xmSZIkSZIkadpwzyy4E9imPV4K/E2STwHbAU8F3jTa4M123Mkne0mSJEmSJE2Rnk9mVdWtSS5Kcg3wDeAq4EqaDeD/b1X9pqsBSpIkSZIk6Y96PpnVml9Ve3W8HrUaq9N9N9/Ebz76z5MQkqTp5mGvfnu3Q5AkSZKkGc89s4CqOqDbMUiSJEmSJGlsJrOAJCvar4ckuSDJWUmuS3JGknQ7PkmSJEmSJDVMZj3YE4DjgT2A3YADh3ZI0p9kIMnArSvumuLwJEmSJEmSepfJrAe7tKp+XVX3A1cA84d2qKolVdVXVX3bz956quOTJEmSJEnqWSazHmxlx/Fq3CRfkiRJkiRpo2EyS5IkSZIkSdOGVUcbaLMdd+Zhr357t8OQJEmSJEnqCamqbscwre2z68513ptf3u0wpJ6282v+pdshSJIkSZImUJLBquob7pzLDCVJkiRJkjRtzNhkVpI3JTmuPf5Aku+0x4cmOSPJR5MMJFmW5B87xp2U5L+TXJXkvd2KX5IkSZIkSQ82k/fMWgr8LXAK0AdskWQz4GDgQuDMqvp9kk2AbyfZG/hf4DnA7lVVSeYNd+Ek/UA/wCO2mzPpE5EkSZIkSVJjxlZmAYPAvknmACuBi2mSWgfTJLqen+Qy4HJgT2AP4A7gXuCTSZ4L3D3chatqSVX1VVXf9rO3mvyZSJIkSZIkCZjByayqug+4HjgG+AFNAuvpwELgHuAE4E+qam/gXGBWVf0BeDJwFnA4cN7URy5JkiRJkqSRzNhkVmspTdLqwvb4WJpKrDnAXcAdSXYC/hwgyWxgblV9HXgDsE83gpYkSZIkSdLwZvKeWdAksN4GXFxVdyW5F1haVVcmuRy4DvgVcFHbfxvgK0lmAQHeONYNNtvxEez8mn+ZnOglSZIkSZK0llRVt2PoiiTzgXOqaq8Nuc4+j3poff3NL5iYoKQZ6BGv/XC3Q5AkSZIkTTNJBquqb7hzM32ZoSRJkiRJkmaQXk9mbZLk40mWJTk/yZZJFiQ5L8lgkqVJdu92kJIkSZIkSWr0ejJrEfCRqtoTuB04ElgCvL6q9qXZPP7U7oUnSZIkSZKkTjN9A/ixXF9VV7THg8B84ADgzCRr+mwxdFCSfqAf4BHbzp70ICVJkiRJktTo9WTWyo7j1cBOwO1VtXi0QVW1hKaCi30e9dDe3EFfkiRJkiSpC3p9meFQy4HrkzwPII19uhyTJEmSJEmSWr1emTWco4GPJnk7sBnwn8CVI3Xe7KGP4hGv/fBUxSZJkiRJktTTUuUquQ2x96O2r3Pf9MxuhyENa5fXn9HtECRJkiRJWmdJBquqb7hzM36ZYZIjklSS3ddx3CFJzpmsuCRJkiRJkrTuZnwyC3gR8P32qyRJkiRJkqaxGZ3MSjIbOAh4JfDCtu2QJBckOSvJdUnOSJL23DPbtsuA53YvckmSJEmSJA1nRiezgGcD51XVT4Bbk+zbtj8BOB7YA9gNODDJLODjwF8C+wIPG+miSfqTDCQZ+P2KeyczfkmSJEmSJHWY6cmsF9E8jZD265qlhpdW1a+r6n7gCmA+sDtwfVX9tJpd8T870kWraklV9VVV33azZ01a8JIkSZIkSVrbpt0OYLIk2Q44FHh8kgI2AQo4F1jZ0XU1M/h9kCRJkiRJmklmchLnKOAzVfU3axqSfA84eIT+1wHzkyyoqp8zzg3jN3/oo9nl9WdscLCSJEmSJEka20xeZvgi4OwhbV9khCRVVd0L9APnthvA/25yw5MkSZIkSdK6SrM9lNbX4x81r77ypkO6HYY0rN1e/+VuhyBJkiRJ0jpLMlhVfcOdm8mVWessySbdjkGSJEmSJEkjmzHJrCRvSnJce/yBJN9pjw9NckaSZyS5OMllSc5MMrs9f0OSk9ulhc8bqZ8kSZIkSZK6b8Yks4ClPLC5ex8wO8lmbdtVwNuBw6rqicAA8MaOsbe27f81Rj8AkvQnGUgy8PsVqyZtQpIkSZIkSVrbTHqa4SCwb5I5wErgMpqk1sHAV4E9gIuSAGwOXNwx9vPt1/3G6AdAVS0BlkCzZ9YkzEWSJEmSJEnDmDHJrKq6L8n1wDHAD2iqsZ4OLASuB75VVcM+yRC4q/2aMfpJkiRJkiSpi2ZMMqu1FDgBeAVwNfB+moqtS4CPJFlYVT9LsjXwiKr6yZDx4+33R1s8dKFPjJMkSZIkSZoiM2nPLGiSWTsDF1fVb4F7gaVVdTNNxdbnklxFs3Rw96GDx9tPkiRJkiRJ3TGjKrOq6tvAZknmJXlNVT0mySFJzqmqw4EnDTNm/pDX30nyEeD8qrpxrHve+7ufcd1Hnj1RU5DGbffXfqXbIUiSJEmSNOVmWmXWGvOA12zA+GOAh09IJJIkSZIkSZowM6oyq8NJwIIkVwD3AXclOQvYi2YPrZdUVSX5B+AvgS1pNo3/G+BImqcgnpHkHmD/qrqnC3OQJEmSJEnSEDO1MustwM+rajHwJuAJwPHAHsBuwIFtv/9XVU+qqr1oElqHV9VZwABwdFUtHi6RlaQ/yUCSgdtWrJr82UiSJEmSJAmYucmsoS6tql9X1f3AFcD8tv3pSX6Y5GrgUGDP8VysqpZUVV9V9W07e/NJCViSJEmSJEkPNlOXGQ61suN4NbBpklnAqUBfVf0qyYnArG4EJ0mSJEmSpPGZqcmsO4FtxuizJnF1S5LZwFHAWeswvrnIQxf6VDlJkiRJkqQpMiOTWVV1a5KLklwD3AP8dpg+tyf5OHAN8BvgRx2nTwc+5gbwkiRJkiRJG5dUVbdjmFJJ5gPntJu+d7a/E7iwqv5rXa63567z6j/f8tQJjFAan8e/+qvdDkGSJEmSpEmRZLCq+oY7NyMrs9ZHVf1Dt2OQJEmSJEnS6HrlaYZDbZLk40mWJTk/yZZJTk9yFECSk5L8d5Krkry328FKkiRJkiSp0auVWYuAF1XVq5J8AThyzYkk2wPPAXavqkoyb+jgJP1AP8DO2205NRFLkiRJkiSpZyuzrq+qK9rjQWB+x7k7gHuBTyZ5LnD30MFVtaSq+qqqb9vZm092rJIkSZIkSWr1ajJrZcfxajoq1KrqD8CTgbOAw4HzpjY0SZIkSZIkjaRXlxmOKMlsYKuq+nqSi4BfjNZ/yx0X+lQ5SZIkSZKkKWIy68G2Ab6SZBYQ4I1djkeSJEmSJEmtnktmVdUNwF5J5gPnVNVew3R78nivd/fNP+Oyj/3lBEUnPeCJx36t2yFIkiRJkrTR6dU9syRJkiRJkjQN9Xoya9MkZyS5NslZSZ6V5MtrTib50yRndzE+SZIkSZIkdej1ZNZjgVOr6nHAcmBPYPckO7bnXw6cNnRQkv4kA0kGbluxauqilSRJkiRJ6nG9nsz6VVVd1B5/FjgQ+AzwkiTzgP2BbwwdVFVLqqqvqvq2nb35lAUrSZIkSZLU63puA/ghapjX/w58DbgXOLOq/jDlUUmSJEmSJGlYvV6Z9agk+7fHLwa+X1U3AjcCb6dJbEmSJEmSJGkj0euVWT8GXpvkNOC/gY+27WcAO1bVtWNdYKsdF/LEY782iSFKkiRJkiRpjRmdzEoyHzinqvYaeq6qbgB2H2HoQcDHk6yoqtmj3eOum3/GD//t8A0NVT3oKX9zTrdDkCRJkiRp2un1ZYYPkmQQ2JtmQ3hJkiRJkiRtRHohmbVJko8nWZbk/CRbJnlVkh8luTLJF5NsBZDk0cAqYFvg77satSRJkiRJkh6kF5JZi4CPVNWewO3AkcCXqupJVbUPcC3wyrbvh4CPVtXjgZtGumCS/iQDSQZuX7FqcqOXJEmSJEnSH/VCMuv6qrqiPR4E5gN7JVma5GrgaGDP9vyBwOfa48+MdMGqWlJVfVXVN2/25pMTtSRJkiRJkh6kF5JZKzuOV9Nsen868Lq2AusfgVkdfWrqQpMkSZIkSdK66IVk1nC2AW5KshlNZdYaFwEvbI+PftAoSZIkSZIkddWm3Q6gS/4e+CFwc/t1m7b9/wD/keTNwFfGc6Gtd1zIU/7mnEkJUpIkSZIkSWtLlavqRpNkRVXNHun87rvOq0++7aCpDEnTwIH9JjglSZIkSVpfSQarqm+4c726zFCSJEmSJEnTkMksSZIkSZIkTRsmsyRJkiRJkjRtmMxaD0n6kwwkGbh9xapuhyNJkiRJktQzTGath6paUlV9VdU3b/bm3Q5HkiRJkiSpZ5jMkiRJkiRJ0rSxabcDmO5m77iQA/vP6XYYkiRJkiRJPcHKrDFU1exuxyBJkiRJkqSGlVkb6M5bfsoFH/+LboehKXbIq87tdgiSJEmSJPUkK7MkSZIkSZI0bfR8MivJl5MMJlmWpD/JJklOT3JNkquTvKHbMUqSJEmSJKnhMkN4RVX9PsmWwI+AQeARVbUXQJJ5Qwck6Qf6AXbabtYUhipJkiRJktTber4yCzguyZXAJcAuwObAbkk+nOSZwPKhA6pqSVX1VVXf3G02n+JwJUmSJEmSeldPJ7OSHAIcBuxfVfsAlwNbAPsAFwDHAp/oUniSJEmSJEkaoteXGc4Fbququ5PsDuwH7AA8pKq+mOTHwGdHu8A2OyzyyXaSJEmSJElTpNeTWecBxya5FvgxzVLDRwAXJFlTtfZ33QpOkiRJkiRJa+vpZFZVrQT+vLMtyQ+q6olJ5gMHVNU3RrvG8lt+yn994lmTGKU2Rof9f1/vdgiSJEmSJPWknt4zazhVdUB7OB94cRdDkSRJkiRJ0hAms4ZIsqI9PAk4OMkVSd7QzZgkSZIkSZLU6OllhmN4C3BCVR0+9ESSfqAf4KHbzZrquCRJkiRJknqWlVnroaqWVFVfVfXN3WbzbocjSZIkSZLUM0xmSZIkSZIkadpwmeHI7gS2GavTnB0W+WQ7SZIkSZKkKWJl1siuAlYnudIN4CVJkiRJkjYOM7oyK8n2wLfblw8DVgM3A/OBG6tqj6Fjqmp2+/U+4NCx7rH8lp9y3iefNVEhawI885VWykmSJEmSNFPN6Mqsqrq1qhZX1WLgY8AH2uPFwP1dDE2SJEmSJEnrYUYns8awSZKPJ1mW5PwkWwIkWZDkvCSDSZYm2b3bgUqSJEmSJKnRy8msRcBHqmpP4HbgyLZ9CfD6qtoXOAE4dejAJP1JBpIM3HHnqqmKV5IkSZIkqefN6D2zxnB9VV3RHg8C85PMBg4Azkyypt8WQwdW1RKapBePmT+3Jj9USZIkSZIkQW8ns1Z2HK8GtqSpVLu93VdLkiRJkiRJG5leTmY9SFUtT3J9kudV1ZlpyrP2rqorRxozZ4dFPj1PkiRJkiRpivTynlkjORp4ZZIrgWXAs7scjyRJkiRJklqp6r0tn5LcAPRV1S0beq1F8+fWB/7hgA0PSuN2+Cu+0e0QJEmSJEnSJEoyWFV9w52zMkuSJEmSJEnTxoxPZiXZOsm5Sa5Mck2SF7SnXp/ksiRXJ9m9o+9pSS5NcnkSlxhKkiRJkiRtRGZ8Mgt4JnBjVe1TVXsB57Xtt1TVE4GPAie0bW8DvlNVTwaeDrwnydZDL5ikP8lAkoE7VqyagilIkiRJkiQJeiOZdTXwp0lOTnJwVd3Rtn+p/ToIzG+PnwG8JckVwAXALOBRQy9YVUuqqq+q+ubO3nwyY5ckSZIkSVKHTbsdwGSrqp8keSLwLOCfk3y7PbWy/bqaB96HAEdW1Y+nOExJkiRJkiSNw4yvzErycODuqvos8B7giaN0/ybNXlppxz5hCkKUJEmSJEnSOM34yizg8TR7X90P3Ae8GjhrhL7/BHwQuCrJQ4DrgcNHu/jcHRZx+Cu+MXHRSpIkSZIkaUSpqm7HMKGSrKiq2W1F1ilVdVSSxcDDq+rrbZ9DgFVV9YP29YnAiqp677reb+H8ufXefzhgosLXOBxh8lCSJEmSpBktyWBV9Q13bsYuM6yqG6vqqPblYpo9s9Y4BDADJUmSJEmSNM3M2GWGSeYD59DskfVOYMskBwGfA44FVid5CfD6IeMWAB8BdgTuBl5VVddNYeiSJEmSJEkawYxNZq1RVauS/APQV1WvA0iyJR3LCpP8SceQJcCxVfXTJE8BTgUO7bxmkn6gH2DH7WdNwSwkSZIkSZIEPZDMWhdJZtMsPzyzfaAhwBZD+1XVEpqkFwvnz51Zm45JkiRJkiRtxExmre0hwO1VtbjbgUiSJEmSJOnBZuwG8EPcCWwzymsAqmo5cH2S5wGksc/UhChJkiRJkqSx9Epl1neBtyS5AvhX4GvAWUmezZAN4IGjgY8meTuwGfCfwJUjXXjeDos44hXfmJSgJUmSJEmStLZU9caWT2ueblhVe03kdRfMn1snv2P/ibykxnDUy8/rdgiSJEmSJGkSJRmsqr7hzvXKMsMNkqRXKtgkSZIkSZI2ar2WzNokyceTLEtyfpItkyxIcl6SwSRLk+wOkOT0JB9L8kPg3V2OW5IkSZIkSfTOnllrLAJeVFWvSvIF4Ejg5cCxVfXTJE8BTgUObfs/EjigqlZ3J1xJkiRJkiR16rVk1vVVdUV7PAjMBw4Azkyyps8WHf3PHC6RlaQf6AfYYftZkxWrJEmSJEmShui1ZNbKjuPVwE7A7VW1eIT+dw3XWFVLgCXQbAA/kQFKkiRJkiRpZL22Z9ZQy4HrkzwPII19uhyTJEmSJEmSRtBrlVnDORr4aJK3A5sB/wlcOd7B2+6wiKNeft5kxSZJkiRJkqQOqXKV3IbYbf7c+pd37N/tMGaMF5oYlCRJkiSp5yUZrKq+4c715DLDJMcluTbJGd2ORZIkSZIkSePXq8sMXwMcVlW/Hqtjkk2r6g9TEJMkSZIkSZLG0HPJrCQfA3YDvpHkdODg9vXdQH9VXZXkRGBB2/4/wIu6E60kSZIkSZI69dwyw6o6FrgReDowH7i8qvYG3gp8uqPrHjTVWw9KZCXpTzKQZODOFaumIGpJkiRJkiRBDyazhjgI+AxAVX0H2D7JnPbcV6vqnuEGVdWSquqrqr5tZm8+RaFKkiRJkiSp15NZo7mr2wFIkiRJkiRpbT23Z9YQS4GjgX9KcghwS1UtTzLuC2y3wyJe+PLzJic6SZIkSZIkraXXk1knAqcluYpmA/iXdTccSZIkSZIkjSZV1e0YprXdHj233vmO/bodxozxkmO+2e0QJEmSJElSlyUZrKq+4c65Z1YrDd8PSZIkSZKkjdiMW2aY5CTgV1X1kfb1icAKIMDzgS2As6vqHUnmA98EfgjsC3whybZVdXw79lXAHlX1hqmehyRJkiRJkh5sJlYifZ4mabXG84GbgUXAk4HFwL5JntqeXwScWlV7Au8D/jLJZu25lwOnDb1Bkv4kA0kGlt+5anJmIUmSJEmSpAeZcZVZVXV5kocmeTiwI3Ab8HjgGcDlbbfZNEms/wF+WVWXtGNXJPkOcHiSa4HNqurqYe6xBFgCzZ5Zkz0nSZIkSZIkNWZcMqt1JnAU8DCaSq1dgX+tqn/r7NQuM7xryNhPAG8FrgP+fdIjlSRJkiRJ0rjN1GTW54GPAzsAT6OpzPqnJGe01VePAO4bbmBV/TDJLsATgb3HutF22y/yCXySJEmSJElTZEYms6pqWZJtgP+tqpuAm5I8Drg4CTQbwr8EWD3CJb4ALK6q26YkYEmSJEmSJI3LjExmAVTV45PslOQ/gP1o9s5aAby7qs7u6LrXMMMPAj6Q5ALghKoaGOk+t976E07/1DMmMPLedszLzu92CJIkSZIkaSM2E59mCECaEqwvAxdW1W5VtS/wQuCRo4yZl+QnwD1V9e2piVSSJEmSJEnjNWOTWcChwKqq+tiahqr6ZVV9OMmsJP+e5Ooklyd5ettlJXAZsFeSs4EtuxC3JEmSJEmSRjBjlxkCe9IkpobzWqDapYi7A+cneQzwauDuqnpckr1HGp+kH+gH2H77WRMfuSRJkiRJkoY1kyuz1pLkI0muTPIjmj2xPgtQVdcBvwQeAzy1o/0q4KrhrlVVS6qqr6r6ttlmsymJX5IkSZIkSTM7mbUMeOKaF1X1WuBPgB27FpEkSZIkSZI2yExeZvgd4F+SvLqqPtq2bdV+XQocDXynXV74KODHwIXAi9v2vYC9x7rJ9ts/xifwSZIkSZIkTZEZW5lVVQUcATwtyfVJLgU+BbwZOBV4SJKrgc8Dx1TVSuCjwOwk1wLvBAa7ErwkSZIkSZKGlSbno/U1/9Fz6+//cb9uhzFtvPKvv9ntECRJkiRJ0kYuyWBV9Q13bsZWZk2UNHyfJEmSJEmSNgImaYAkb0xyTfvv+CTzk/w4yaeBa4Bduh2jJEmSJEmSZvYG8OOSZF/g5cBTgAA/BL4HLAJeVlWXDDOmH+gH2G77WVMXrCRJkiRJUo+zMgsOAs6uqruqagXwJeBg4JfDJbIAqmpJVfVVVd8222w+lbFKkiRJkiT1NJNZI7ur2wFIkiRJkiRpbT2/zBBYCpye5CSaZYbPAV5Ku4xwLDtsv8gn9EmSJEmSJE2Rnk9mVdVlSU4HLm2bPgHc1r2IJEmSJEmSNJJUVbdjmBJJ5gPnVNVe4+x/CLCqqn4wWr9dHz233vrO/TY4vl7xNy+1ik2SJEmSJI0uyWBV9Q13zj2zRnYIcEC3g5AkSZIkSdIDei2ZtWmSM5Jcm+SsJFsluSHJDgBJ+pJc0FZxHQu8IckVSQ7uatSSJEmSJEkCei+Z9Vjg1Kp6HLAceM1wnarqBuBjwAeqanFVLe08n6Q/yUCSgRV3rprsmCVJkiRJktTqtWTWr6rqovb4s8BB63ORqlpSVX1V1Td7m80nLjpJkiRJkiSNqteSWUN3uy/gDzzwPsya2nAkSZIkSZK0LnotmfWoJPu3xy8Gvg/cAOzbth3Z0fdOYJupC02SJEmSJEljSdXQYqWZqd3U/TxggCZ59d/AS9vjT9LsoXUB0FdVhyR5DHAWcD/w+qH7Zq3R19dXAwMDkx6/JEmSJElSr0gyWFV9w53bdKqDmQpJVlTV7M62qrohyQeBu6vqJR2nlgKPaccdAuze9v8JsPdY9/rd73/KRz77ZxMT+DT32pd8s9shSJIkSZKkGW5GJrNGUlUf63YMkiRJkiRJWn/Tcs+sJG9Kclx7/IEk32mPD01yRnv8riRXJrkkyU5t24lJTmiPFyb5r7bPZUkWtJefneSsJNclOSNJujBFSZIkSZIkDWNaJrNolgYe3B730SSgNmvbLgS2Bi6pqn3a168a5hpnAB9p+xwA3NS2PwE4HtgD2A04cOjAJP1JBpIMrFi+asImJUmSJEmSpNFN12TWILBvkjnASuBimqTWwTSJrlXAOR1953cOTrIN8IiqOhugqu6tqrvb05dW1a+r6n7giqFj2/5Lqqqvqvpmz9l8gqcmSZIkSZKkkUzLPbOq6r4k1wPHAD8ArgKeDiwErgXuqwce07iadZvnyo7jdR0rSZIkSZKkSTRdK7OgqcA6gWYZ4VLgWODyjiTWiKrqTuDXSY4ASLJFkq0mMVZJkiRJkiRNgOlcdbQUeBtwcVXdleTetm28Xgr8W5J3AvcBz1ufIB663SJe+5Jvrs9QSZIkSZIkraOMo5BpRkoyHzinqvbakOvsstvc+tt/3m9igprmjn+xST1JkiRJkrThkgxWVd9w56bzMkNJkiRJkiT1mF5PZm2a5Iwk1yY5K8lWSfZN8r0kg0m+mWTnbgcpSZIkSZKkRq8nsx4LnFpVjwOWA68FPgwcVVX7AqcB7+pifJIkSZIkSeownTeAnwi/qqqL2uPPAm8F9gK+lQRgE+CmoYOS9AP9ANvuMGtqIpUkSZIkSVLPJ7OG7n5/J7CsqvYfdVDVEmAJNBvAT1JskiRJkiRJGqLXlxk+KsmaxNWLgUuAHde0JdksyZ5di06SJEmSJElr6fXKrB8Dr01yGvDfNPtlfRM4Jclcmvfng8CykS6w03aLOP7F35yCUCVJkiRJktSzyayqugHYfZhTVwBPndJgJEmSJEmSNC4zJpmVZB7w4qo6NckhwAlVdfg6jH8ncGFV/de63Pe3v/8p7/3cn63LkBnrhBdZoSZJkiRJkibXTNozax7wmvUdXFX/MFwiK8kmGxKUJEmSJEmSJs5MSmadBCxIcgXwHmB2krOSXJfkjCQBSLJvku8lGUzyzSQ7t+2nJzmqPb4hyclJLgOe16X5SJIkSZIkaYgZs8wQeAuwV1UtbpcZfgXYE7gRuAg4MMkPaTZ5f3ZV3ZzkBcC7gFcMc71bq+qJw90oST/QDzBvh1kTPQ9JkiRJkiSNYCYls4a6tKp+DdBWa80Hbgf2Ar7VFmptAtw0wvjPj3ThqloCLAHYZbe5NVEBS5IkSZIkaXQzOZm1suN4Nc1cAyyrqv3HMf6uSYlKkiRJkiRJ620mJbPuBLYZo8+PgR2T7F9VFyfZDHhMVS1b35vutN0in+InSZIkSZI0RWZMMquqbk1yUZJrgHuA3w7TZ1W7yfspSebSzP+DwHonsyRJkiRJkjR1UjV9t3xKMg94cVWd2m76fkJVHT6VMTxit7n12n/ZbypvudF66wutUJMkSZIkSRsuyWBV9Q137iFTHcwEmwe8ZiIulGTGVKlJkiRJkiTNVNM9gXMSsKB9WuF9wF1JzqJ5YuEg8JKqqiT7Au8HZgO3AMdU1U1JLgCuAA4CPte+flC/KZ2RJEmSJEmSRjTdk1lvAfaqqsXtMsOvAHsCNwIXAQcm+SHwYeDZVXVzkhcA7wJe0V5j86rqazeD/94o/f4oST/QDzB3h1mTOT9JkiRJkiR1mO7JrKEurapfA7TVWvOB22kqtb6VBGAToLPa6vPt18eO0e+PqmoJsASaPbMmdgqSJEmSJEkayUxLZq3sOF5NM78Ay6pq/xHG3NV+HaufJEmSJEmSumy6J7PuBLYZo8+PgR2T7F9VF7fLCR9TVcvWs99adt5ukU/xkyRJkiRJmiLTOplVVbcmuSjJNcA9wG+H6bMqyVHAKUnm0sz5g8Cy9eknSZIkSZKk7klV7235lOTrwIvbly+uqlPb9kOAE6rq8PFe6+EL5lb/v+434TFORyc+3wo1SZIkSZK04ZIMVlXfcOceMtXBbAyq6llVdTswD3hNd6ORJEmSJEnSeM3IZFaSNyU5rj3+QJLvtMeHJjkjyQ1JdgBOAhYkuSLJe9rhs5OcleS6tm+6NA1JkiRJkiQNMSOTWcBS4OD2uI8mQbVZ23ZhR7+3AD+vqsVV9aa27QnA8cAewG7AgUMvnqQ/yUCSgbuXr5qkKUiSJEmSJGmomZrMGgT2TTIHWAlcTJPUOpgm0TWaS6vq11V1P3AFMH9oh6paUlV9VdW31ZzNJzRwSZIkSZIkjWxaP81wJFV1X5LrgWOAHwBXAU8HFgLXjjF8ZcfxamboeyRJkiRJkjQdzeREzVLgBOAVwNXA+4HBqqqObbDuBLbZkJs8fNtFPsVPkiRJkiRpiszUZYbQJLN2Bi6uqt8C9zJkiWFV3QpclOSajg3gJUmSJEmStJFKVXU7hgnVPsXw1cBlVXX0ZN9v5wVz65iT9p/s22wU/vV553U7BEmSJEmS1AOSDFZV33DnZuIyw9cAh1XVr9c0JNm0qv7QxZgkSZIkSZI0AWbUMsMkHwN2A76R5I4kn0lyEfCZJPOTfCfJVUm+neRR7ZjTk3w0ySVJfpHkkCSnJbk2yendnI8kSZIkSZLWNqOSWVV1LHAjzZMLPwDsQVOl9SLgw8Cnqmpv4AzglI6h2wL7A28AvtqO3RN4fJLFQ++TpD/JQJKBu5evmsQZSZIkSZIkqdOMSmYN46tVdU97vD/wH+3xZ4CDOvp9rZrNw64GfltVV1fV/cAyYP7Qi1bVkqrqq6q+reZsPnnRS5IkSZIkaS0zPZl11zj7rWy/3t9xvOb1TNxXTJIkSZIkaVqa6cmsTj8AXtgeHw0s7WIskiRJkiRJWg+9VHX0euDfk7wJuBl4+URc9BHbLuJfn3feRFxKkiRJkiRJY0izVdTMlOQHVXXAGH2OB5ZU1d3rc4+dFsytF717//UZutH54JEm5SRJkiRJUvclGayqvuHOzehlhmMlslrHA1tNciiSJEmSJEmaADM6mZVkRfv1kCQXJDkryXVJzkjjOODhwHeTfLft+6IkVye5JsnJ3YxfkiRJkiRJa5vRyawhnkBThbUHsBtwYFWdAtwIPL2qnp7k4cDJwKHAYuBJSY4YeqEk/UkGkgzcs3zVFIUvSZIkSZKkXkpmXVpVv66q+4ErgPnD9HkScEFV3VxVfwDOAJ46tFNVLamqvqrq23LO5pMZsyRJkiRJkjr0UjJrZcfxanrrSY6SJEmSJEkzQi8ls0ZyJ7BNe3wp8LQkOyTZBHgR8L2uRSZJkiRJkqS1WJ0ES4DzktzY7pv1FuC7QIBzq+orow3eZdtFfPDI86YiTkmSJEmSpJ6Xqup2DBuFJD+oqgPWddyOC+fWEe/ZfzJCmnIff45JOUmSJEmS1H1JBquqb7hzLjNsrU8iS5IkSZIkSVPLZFYryYr2685JLkxyRZJrkhzc7dgkSZIkSZLUcM+sB3sx8M2qele7CfxW3Q5IkiRJkiRJDZNZD/Yj4LQkmwFfrqorhnZI0g/0A8zecdbURidJkiRJktTDXGY4RFVdCDwV+F/g9CR/PUyfJVXVV1V9s+ZsPuUxSpIkSZIk9SqTWUMk2RX4bVV9HPgE8MQuhyRJkiRJkqSWywwf7BDgTUnuA1YAD6rM6rTrvEV8/DnnTUVckiRJkiRJPS9V1e0YprXtFs6tw963f7fDmBBfeLZJOUmSJEmS1H1JBquqb7hzLjOUJEmSJEnStGEyS5IkSZIkSdNGz+6ZlWQ+cE5V7dW+PgGYTbNn1pXA02jen1dU1aVdClOSJEmSJEkdrMwa3lZVtRh4DXDa0JNJ+pMMJBlYuXzVlAcnSZIkSZLUq0xmDe9zAFV1ITAnybzOk1W1pKr6qqpvizmbdyM+SZIkSZKkntTLyaw/sPb8Z3UcD33Eo498lCRJkiRJ2gj07J5ZwG+BhybZHlgBHA6c1557AfDdJAcBd1TVHSNdZLd5i/jCs88b6bQkSZIkSZImUM8ms6rqviTvBC4F/he4ruP0vUkuBzYDXtGN+CRJkiRJkvRgqXIFXackFwAnVNXAePrPXbhtHfC+Qyc3qCnyjWd/sdshSJIkSZIkkWSwqvqGO9fLe2ZJkiRJkiRpmunpZFaSNya5pv13fJL5wE7A3yRZluT8JFt2OUxJkiRJkiS1ejaZlWRf4OXAU4D9gFcB2wKLgI9U1Z7A7cCRw4ztTzKQZGDV8pVTF7QkSZIkSVKP69lkFnAQcHZV3VVVK4AvAQcD11fVFW2fQWD+0IFVtaSq+qqqb/M5W0xVvJIkSZIkST2vl5NZI+kstVpNDz/xUZIkSZIkaWPTy4mapcDpSU4CAjwHeCnQvy4XWTRvgU8BlCRJkiRJmiI9m8yqqsuSnA5c2jZ9AritexFJkiRJkiRpLKmqbsewUUry1qr6l7H6zV24Qx3wvmdPRUiT7hvP/mS3Q5AkSZIkSSLJYFX1DXfOPbNG9tZuByBJkiRJkqS19ewyw05JvgzsAswCPgTsBmyZ5ApgWVUd3b3oJEmSJEmStIbJrMYrqur3SbYEfgQ8DXhdVS0ernOSftqN4mftuPWUBSlJkiRJktTrXGbYOC7JlcAlNBVai0brXFVLqqqvqvo2nzNrSgKUJEmSJEmSlVkkOQQ4DNi/qu5OcgHNckNJkiRJkiRtZHo+mQXMBW5rE1m7A/u17fcl2ayq7htt8KJ5830KoCRJkiRJ0hRxmSGcB2ya5FrgJJqlhgBLgKuSnNG1yCRJkiRJkrSWVFW3Y5jW5i7cqQ547wu7HcaE+MYRH+p2CJIkSZIkSSQZrKq+4c5ZmSVJkiRJkqRpo+eSWUnelOS49vgDSb7THh+a5Iwkz0hycZLLkpyZZHZ3I5YkSZIkSdIaPZfMApYCB7fHfcDsJJu1bVcBbwcOq6onAgPAG4deIEl/koEkA6uW3zNFYUuSJEmSJKkXn2Y4COybZA6wEriMJql1MPBVYA/goiQAmwMXD71AVS2h2SCeuQt3ctMxSZIkSZKkKdJzyayqui/J9cAxwA9oqrGeDiwErge+VVUv6l6EkiRJkiRJGknPJbNaS4ETgFcAVwPvp6nYugT4SJKFVfWzJFsDj6iqn4x0oUXzdvEpgJIkSZIkSVOkF/fMgiaZtTNwcVX9FrgXWFpVN9NUbH0uyVU0Swx371qUkiRJkiRJWkuq3PJpOEmOAc6vqhtH6zd34cPqwPe+bGqCmmRfP+LkbocgSZIkSZJEksGq6hvuXK9WZo3HMcDDux2EJEmSJEmSHtAzyawk85Ncm+TjSZYlOT/JlkkWJ7kkyVVJzk6ybZKjaJ5weEaSK5Js2e34JUmSJEmS1EPJrNYi4CNVtSdwO3Ak8GngzVW1N81m8O+oqrOAAeDoqlpcVfd0XiRJf5KBJAOrlt+DJEmSJEmSpkavJbOur6or2uNBYAEwr6q+17Z9CnjqWBepqiVV1VdVfZvPsWhLkiRJkiRpqvRaMmtlx/FqYF6X4pAkSZIkSdJ66LVk1lB3ALclObh9/VJgTZXWncA2XYlKkiRJkiRJw9q02wFsBF4GfCzJVsAvgJe37ae37fcA+w/dN2uNRfMeydePOHlKApUkSZIkSep1qapuxzBhkswDXlxVpyY5BDihqg6fzHvOXfjwOvA9/99k3mLKfP057+x2CJIkSZIkSSQZrKq+4c7NtGWG84DXdDsISZIkSZIkTY6Zlsw6CViQ5ArgPcDsJGcluS7JGUkCkGTfJN9LMpjkm0l2TrIgyWVrLpRkUedrSZIkSZIkdd9MS2a9Bfh5VS0G3gQ8ATge2APYDTgwyWbAh4Gjqmpf4DTgXVX1c+COJIvba70c+PfhbpKkP8lAkoFVy++exOlIkiRJkiSp00zfAP7Sqvo1QFutNR+4HdgL+FZbqLUJcFPb/xPAy5O8EXgB8OThLlpVS4Al0OyZNWnRS5IkSZIkaS0zPZm1suN4Nc18Ayyrqv2H6f9F4B3Ad4DBqrp18kOUJEmSJEnSeM20ZYZ3AtuM0efHwI5J9gdIslmSPQGq6l7gm8BHGWGJoSRJkiRJkrpnRlVmVdWtSS5Kcg1wD/DbYfqsSnIUcEqSuTTvwQeBZW2XM4DnAOeP556L5j2crz/nnRMRviRJkiRJksaQKrd86pTk98BpVXVCkhVVNXu0/nMXPqIOfM+rpyi6yfX157y92yFIkiRJkiSRZLCq+oY7N9OWGW6QJGcDs2k3d5ckSZIkSdLGZUYtM1xXSb4M7ALMAj5UVc9JcgPw+27GJUmSJEmSpOH1dDILeEVV/T7JlsCPknyx2wFJkiRJkiRpZL2ezDouyXPa412AReMZlKQf6AeYtePcSQpNkiRJkiRJQ/XsnllJDgEOA/avqn2Ay2mWG46pqpZUVV9V9W0+Z+vJC1KSJEmSJElr6dlkFjAXuK2q7k6yO7BftwOSJEmSJEnS6Hp5meF5wLFJrgV+DFyyPhdZNG9nvv6ct09oYJIkSZIkSRpezyazqmol8OfDnJrf0Wf2lAUkSZIkSZKkMU27ZFaS+cA5VbVXt2MB+Ontv+FZZ5/U7TDG9PXnvKXbIUiSJEmSJG2wXt4zS5IkSZIkSdPMdE1mbZLk40mWJTk/yZZJFie5JMlVSc5Osi1AkguS9LXHOyS5oT3eM8mlSa5oxyxq21/S0f5vSTbp2iwlSZIkSZK0lumazFoEfKSq9gRuB44EPg28uar2Bq4G3jHGNY4FPlRVi4E+4NdJHge8ADiwbV8NHD10YJL+JANJBlYtv2tiZiRJkiRJkqQxTbs9s1rXV9UV7fEgsACYV1Xfa9s+BZw5xjUuBt6W5JHAl6rqp0n+BNgX+FESgC2B3w0dWFVLgCUAcxc+sjZwLpIkSZIkSRqn6ZrMWtlxvBqYN0rfP/BABdqsNY1V9R9Jfgj8BfD1JH8DBPhUVf3dxIYrSZIkSZKkiTBdk1lD3QHcluTgqloKvBRYU6V1A0211aXAUWsGJNkN+EVVnZLkUcDewPnAV5J8oKp+l2Q7YJuq+uVIN14072E+KVCSJEmSJGmKzJRkFsDLgI8l2Qr4BfDytv29wBeS9APndvR/PvDSJPcBvwH+pap+n+TtwPlJHgLcB7wWGDGZJUmSJEmSpKmTqt7e8inJBcAJVTUwpP0YoK+qXjfa+LkLd6mD3n38pMU3Uc597t92OwRJkiRJkqRxSTJYVX3DnZuuTzOcEEk26XYMkiRJkiRJGr9pm8xK8qYkx7XHH0jynfb40CRnJHlRkquTXJPk5I5xK5K8L8mVwP5DrvnyJD9Jcilw4FTOR5IkSZIkSWObtsksYClwcHvcB8xOslnb9hPgZOBQYDHwpCRHtH23Bn5YVftU1ffXXCzJzsA/0iSxDgL2GOnGSfqTDCQZWHXHXRM6KUmSJEmSJI1sOiezBoF9k8wBVgIX0yS1DgZuBy6oqpur6g/AGcBT23GrgS8Oc72ndIxZBXx+pBtX1ZKq6quqvs3nbj1hE5IkSZIkSdLopm0yq6ruA64HjgF+QFOp9XRgIXDDKEPvrarVkx2fJEmSJEmSJt6m3Q5gAy0FTgBeAVwNvJ+mYutS4JQkOwC3AS8CPjzGtX4IfCjJ9sBy4HnAlWMFsGjeTj4pUJIkSZIkaYpM28qs1lJgZ+DiqvotcC+wtKpuAt4CfJcmITVYVV8Z7ULtmBNpliteBFw7iXFLkiRJkiRpPaSquh3DtDZ34aPqoHdv/JVZ5z73/3Q7BEmSJEmSpHFJMlhVfcOdm+6VWZIkSZIkSeohMyKZlWR+kms6Xp+Q5MQkFyT5UJIrklyT5Mnt+e2SfDnJVUkuSbJ3235iktPacb9Icly35iRJkiRJkqQHmxHJrDFsVVWLgdcAp7Vt/whcXlV7A28FPt3Rf3fgz4AnA+9IstnQCybpTzKQZGDVHSsmNXhJkiRJkiQ9oBeSWZ8DqKoLgTlJ5gEHAZ9p278DbJ9kTtv/3KpaWVW3AL8Ddhp6wapaUlV9VdW3+dzZUzEHSZIkSZIkMXOSWX9g7bnM6jgeusP9WDver+w4Xg1sugFxSZIkSZIkaQLNlETNb4GHJtkeWAEcDpzXnnsB8N0kBwF3VNUdSZYCRwP/lOQQ4JaqWp5knW+8aN5DfVKgJEmSJEnSFJkRyayqui/JO4FLgf8Frus4fW+Sy4HNgFe0bScCpyW5CrgbeNkUhitJkiRJkqT1lKqxVt1NX0kuAE6oqoHJusfchY+qg979fyfr8hPm3Oe+rtshSJIkSZIkjUuSwarqG+7cTNkz64+SzE9yT5KrgT7gjCS/SfK/Sa5o/z0myTXdjlWSJEmSJEnrZkYsMxzGz6vq8WteJDkRWFFV721fz+9SXJIkSZIkSdoAM64yax1skuTjSZYlOT/JlgBJFiQ5L8lgkqVJdh86MEl/koEkA6vuWDH1kUuSJEmSJPWoXk5mLQI+UlV7ArcDR7btS4DXV9W+wAnAqUMHVtWSquqrqr7N586eqnglSZIkSZJ63kxdZjge11fVFe3xIDA/yWzgAODMJGv6bdGF2CRJkiRJkjSMXk5mrew4Xg1sSVOpdntVLe5KRJIkSZIkSRpVLyezHqSqlie5PsnzqurMNOVZe1fVlSONWTTvoZz73NdNYZSSJEmSJEm9a8Yms5JsD3y7fbkQWJ3kJe3rxwI/7+jeB+wGnAhcCnwmyaeBALcleVxV3T7cfX56+838xZc+OvETmGDnPvfV3Q5BkiRJkiRpg83YZFZV3QosBkhyIrCiqt7bvl5RVXt1dD+PJqEFzWbwb1/TV5IkSZIkSRuPmfg0w9XA3CRXdDsQSZIkSZIkTawZV5lVVb8Cdhmj25ZDkl3bAV/teP2GjiWJt1XV0zsHJ+kH+gFm7bDdhgUsSZIkSZKkcZtxyaxxuqfziYVJjuGBZYYAHxhtmWFVLQGWAMxduGtNUoySJEmSJEkaYiYuM5QkSZIkSdIMZTJLkiRJkiRJ00avLjMcS+eeWQBHVNUNw3VcNG9Hzn3uq6cmKkmSJEmSpB6Xqt7d8inJ24AX0zwB8X7gb6rqh+tyjbkLdq2D3v22yQhvQp17ZH+3Q5AkSZIkSRqXJINV1TfcuZ6tzEqyP3A48MSqWplkB2DzLoclSZIkSZKkUfTynlk7A7dU1UqAqrqlqm5M8idJLk9ydZLTkmzR5TglSZIkSZLU6uVk1vnALkl+kuTUJE9LMgs4HXhBVT2epnLNDbEkSZIkSZI2Ej2bzKqqFcC+QD9wM/B54G+A66vqJ223TwFPHTo2SX+SgSQDq5avmKqQJUmSJEmSel7P7pkFUFWrgQuAC5JcDbx2nOOWAEug2QB+0gKUJEmSJEnSWnq2MivJY5Ms6mhaDPwcmJ9kYdv2UuB7Ux2bJEmSJEmShtfLlVmzgQ8nmQf8AfgZzZLDzwFnJtkU+BHwsdEusmjbHTn3yP5JDlWSJEmSJEkAqXKV3IaYu2B+HfTuv+92GJx75Cu7HYIkSZIkSdKESDJYVX3DnZtWywyTzE9yTbfjkCRJkiRJUndMq2SWJEmSJEmSett0TGZtkuTjSZYlOT/JlkleleRHSa5M8sUkWwEkOT3Jx5IMJPlJksPb9mOSfCXJBUl+muQdbfs7kxy/5kZJ3pXk/3RllpIkSZIkSXqQ6ZjMWgR8pKr2BG4HjgS+VFVPqqp9gGuBzg2k5gNPBv4C+FiSWW37k9uxewPPS9IHnAb8NUCShwAvBD47NIAk/W2CbGDV8jsnfoaSJEmSJEka1nRMZl1fVVe0x4M0yaq9kixNcjVwNLBnR/8vVNX9VfVT4BfA7m37t6rq1qq6B/gScFBV3QDcmuQJwDOAy6vq1qEBVNWSquqrqr7N52wzCVOUJEmSJEnScDbtdgDrYWXH8WpgS+B04IiqujLJMcAhHX2GPq6xxmj/BHAM8DCaSi1JkiRJkiRtJKZjMms42wA3JdmMpjLrfzvOPS/Jp4BHA7sBPwaeAPxpku2Ae4AjgFe0/c8G3glsBrx4rBsv2nYHzj3ylWN1kyRJkiRJ0gSYKcmsvwd+CNzcfu1c+/c/wKXAHODYqro3CW3bF4FHAp+tqgGAqlqV5LvA7VW1euqmIEmSJEmSpLFMq2RWu6fVXh2v39tx+qMjDPuvqjp2mPZfV9URAElWAP/YHj8E2A943nhi+tltt3L4F08fT9dJdc6Rx3Q7BEmSJEmSpEk3HTeAnzRJ9gB+Bny73TBekiRJkiRJG5FpVZm1rqrqmBHaT6fZNH6oh9IsS9w1yXU0T0t8SVUN3SxekiRJkiRJXWBl1oM9ATge2INmw/gDh3ZI0p9kIMnAquV3TnF4kiRJkiRJvctk1oNdWlW/rqr7gSuA+UM7VNWSquqrqr7N52wz9LQkSZIkSZImyZjLDJMcCJwI7Nr2D1BVtdvkhtY1KzuOVzPDl2JKkiRJkiRNJ+NJ1HwSeAPN/lGrJzec6Wfhttv7JEFJkiRJkqQpMp5k1h1V9Y1Jj0SSJEmSJEkaQ8Z6UF+Sk4BNgC/RsQSvqi6b3NBGjGce8OKqOjXJIcAJVXV4N2IBmLfg0XXQye/s1u3/6JyjXtrtECRJkiRJkiZEksGq6hvu3Hgqs57Sfu28QAGHbmhg62ke8Brg1A29UJJNq+oPGxyRJEmSJEmSpsSYyayqevpUBLIOTgIWJLkCuA+4K8lZwF40+3q9pKoqyb7A+4HZwC3AMVV1U5ILaJ5SeBDwufb1g/pN6YwkSZIkSZI0Lg8Zq0OSnZJ8Msk32td7JHnl5Ic2orcAP6+qxcCbgCcAxwN7ALsBBybZDPgwcFRV7QucBryr4xqbt6Vqp4zRb1hJ+pMMJBlYtfzOCZuYJEmSJEmSRjeeZYanA/8OvK19/RPg8zRPOdwYXFpVvwZoq7XmA7fTVGp9Kwk0e351Vlt9vv362DH6DauqlgBLoNkza8OnIEmSJEmSpPEYTzJrh6r6QpK/A6iqPyRZPclxrYuVHceraeYUYFlV7T/CmLvar2P1kyRJkiRJ0kZkPMmsu5JsT7PpO0n2A+6Y1KhGdyewzRh9fgzsmGT/qrq4XXb4mKpaNt5+SV4HUFX/b7QbLdx2e58kKEmSJEmSNEXGk8x6I/BVmk3XLwJ2BI6a1KhGUVW3JrkoyTXAPcBvh+mzKslRwClJ5tLM84PAsnXotztw0WTORZIkSZIkSesmVaNv+ZTk0cCvaPaXCk010+Kq+tHkh9c9Sc4BnltVq0brN2/BbnXQyf80RVGN7Jyjju52CJIkSZIkSRMiyWD78L4HGfNphsBZwE5VtayqrgH2p3nq34xWVYePlciSJEmSJEnS1BpPMutY4MtJHpbkWcCHgWdNblhTI8mXkwwmWZakv21bkeRdSa5MckmSnbodpyRJkiRJkhpjJrPa5YTHAecDJwKHVdWvJjmuqfKKqtoX6AOOaze63xq4pKr2AS4EXjV0UJL+JANJBlYtXz61EUuSJEmSJPWwETeAT/I12icYtraieYrhJ5NQVX812cFNgeOSPKc93gVYBKwCzmnbBoE/HTqoqpYAS6DZM2sK4pQkSZIkSRKjP83wvVMWRRckOQQ4DNi/qu5OcgEwC7ivHtgVfzXje+KjJEmSJEmSpsCIiZqq+t6a43bfqCe1Ly+tqt9NdmBTYC5wW5vI2h3Yb30usnDb7XySoCRJkiRJ0hQZc8+sJM8HLgWeBzwf+GGSoyY7sClwHrBpkmuBk4BLuhyPJEmSJEmSxpAHVtSN0CG5EvjTNdVYSXYE/qvdIH2jleR4YElV3T2Z95m3YLc66OR/mcxbjMs5R72w2yFIkiRJkiRNiCSDVdU33LkxK7OAhwxZVnjrOMd12/E0m9aPW5JNJicUSZIkSZIkTYTxbG7+jSTfBD7Xvn4B8PXJC2ltSd4ErKyqU5J8ANinqg5NcijwSmA5zX5eWwJnVdU7khwHPBz4bpJbqurpSZ4B/COwBfBz4OVVtSLJDcDnaZ5a+O4kDwWOBf4A/HdVWfIkSZIkSZK0kRhPMquAfwMOal8vYT03S19PS4G/BU4B+oAtkmwGHAxcCJxZVb9vq6q+nWTvNvH1RuDpVXVLkh2AtwOHVdVdSd4MvBF4Z3uPW6vqiQBJbgQeXVUrk8wbLqAk/UA/wJY77DBJ05YkSZIkSdJQ41ku+KdV9aWqemP772zgzyc7sA6DwL5J5gArgYtpkloH0yS6np/kMuByYE9gj2GusV/bflGSK4CXAbt2nP98x/FVwBlJXkJTnfUgVbWkqvqqqm/zOdtsyNwkSZIkSZK0DkaszEryauA1wG5Jruo4tQ1w0WQHtkZV3ZfkeuAY4Ac0yaanAwuBe4ATgCdV1W1JTgdmDXOZAN+qqheNcJu7Oo7/Angq8JfA25I8vqqGTWpJkiRJkiRpao1WmfUfNAmdr7Zf1/zbt6peMgWxdVpKk7S6sD0+lqYSaw5NIuqOJDuxdsXYnTSJN4BLgAOTLARIsnWSxwy9SZKHALtU1XeBNwNzgdmTMiNJkiRJkiStsxErs6rqDuAOYKRqpqm0FHgbcHG759W9wNKqujLJ5cB1wK9Yu2JsCXBekhvbDeCPAT6XZIv2/NuBnwy5zybAZ5PMpanmOqWqbh8tsIXbbsc5R7lHvCRJkiRJ0lRIVXU7hmlt3oIFddDJ/9rtMDjnqOd3OwRJkiRJkqQJkWSwqvqGOzeeDeB7RpLxPN1RkiRJkiRJXTIjkllJ5ie5LsnpSX6S5IwkhyW5KMlPkzw5yXZJvpzkqiSXJNm7HXtiks8kuQj4TJIdk3wxyY/afwd2eXqSJEmSJElqzaRKpIXA84BXAD8CXgwcBPwV8FaaPbUur6ojkhwKfBpY3I7dAzioqu5J8h/AB6rq+0keBXwTeFznjZL0A/0AW+6ww2TPS5IkSZIkSa2ZlMy6vqquBkiyDPh2VVWSq4H5wK7AkQBV9Z0k2yeZ0479alXd0x4fBuyRZM115ySZXVUr1jRU1RKaDeaZt2CBm45JkiRJkiRNkZmUzFrZcXx/x+v7aeZ53yhj7+o4fgiwX1XdO7HhSZIkSZIkaUPNiD2zxmkpcDRAkkOAW6pq+TD9zgdev+ZFksVTEJskSZIkSZLGYSZVZo3lROC0JFcBdwMvG6HfccBH2n6bAhcCx4500YXbbss5Rz1/gkOVJEmSJEnScFI1c7Z8SnIisKKq3jtV95y3YEEdfPK7p+p2I/raUUd2OwRJkiRJkqQJkWSwqvqGO9dLywwlSZIkSZI0zU37ZFaStyX5SZLvA49t2xYnuSTJVUnOTrJtkocmGWzP75Okkjyqff3zJFslOT3JKUl+kOQXSY7q4tQkSZIkSZI0xLROZiXZF3ghsBh4FvCk9tSngTdX1d7A1cA7qup3wKwkc4CDgQHg4CS7Ar+rqrvbsTsDBwGHAydN1VwkSZIkSZI0tum+AfzBwNlrElFJvgpsDcyrqu+1fT4FnNke/wA4EHgq8C/AM4HQPOlwjS9X1f3AfyfZabibJukH+gG23GGHCZ2QJEmSJEmSRjatK7PWw4U0CbBdga8A+9BUYXUms1Z2HGe4i1TVkqrqq6q+zefMmaxYJUmSJEmSNMR0T2ZdCByRZMsk2wB/CdwF3Jbk4LbPS4E1VVpLgZcAP22rr35Pszzx+1MbtiRJkiRJktbHtF5mWFWXJfk8cCXwO+BH7amXAR9LshXwC+Dlbf8bkoQmCQZNEuuRVXXb+sawcNtt+dpRR67vcEmSJEmSJK2DVFW3Y5jW+vr6amBgoNthSJIkSZIkzRhJBquqb7hz07oyazIlOQQ4oaoOH63fz267nb8868tTEdKovnbUEd0OQZIkSZIkadJN9z2zJEmSJEmS1EM2mmRWkq2TnJvkyiTXJHlBkn2TfC/JYJJvJtm57bsgyXlt+9Iku7ftpyf5aJJLkvwiySFJTktybZLTO+71jCQXJ7ksyZlJZrftz0xyXZLLgOd2432QJEmSJEnSyDaaZBbwTODGqtqnqvYCzgM+DBxVVfsCpwHvavsuAV7ftp8AnNpxnW2B/YE3AF8FPgDsCTw+yeIkOwBvBw6rqicCA8Abk8wCPk7zRMR9gYeNFGiS/iQDSQZWLV8+QdOXJEmSJEnSWDamPbOuBt6X5GTgHOA2YC/gW80DCNkEuKmtojoAOLNtB9ii4zpfq6pKcjXw26q6GiDJMmA+8EhgD+CidvzmwMXA7sD1VfXTtv9ngf7hAq2qJTQJNeYtWOgO+pIkSZIkSVNko0lmVdVPkjwReBbwz8B3gGVVtX9nvyRzgNuravEIl1rZfr2/43jN602B1cC3qupFQ6470vUkSZIkSZK0kdhokllJHg78vqo+m+R24DXAjkn2r6qLk2wGPKaqliW5PsnzqurMNOVVe1fVleO81SXAR5IsrKqfJdkaeARwHTA/yYKq+jnwolGv0lq47TyfJChJkiRJkjRFNppkFvB44D1J7gfuA14N/AE4Jclcmlg/CCwDjgY+muTtwGbAfwLjSmZV1c1JjgE+l2TN8sS3t5Vh/cC5Se4GlgLbTNTkJEmSJEmStOFS5ZZPG2LegkX11JPf3+0w+OpRf9ntECRJkiRJkiZEksGq6hvu3Mb0NENJkiRJkiRpVD2dzEqydZJzk1yZ5JokL0jyJ0kuT3J1ktM6liJKkiRJkiSpy3o6mQU8E7ixqvapqr2A84DTgRdU1eNp9ul69dBBSfqTDCQZWLX8jikNWJIkSZIkqZf1ejLrauBPk5yc5GBgPnB9Vf2kPf8p4KlDB1XVkqrqq6q+zefMnbpoJUmSJEmSelxPJ7PapNUTaZJa/wwc0dWAJEmSJEmSNKpNux1ANyV5OPD7qvpsktuB1wHzkyysqp8BLwW+N9o1Fm471ycJSpIkSZIkTZGeTmYBjwfek+R+4D6a/bHmAmcm2RT4EfCxLsYnSZIkSZKkDqmqbscwrc1bsKiedvKHuh0GXznqWd0OQZIkSZIkaUIkGayqvuHO9fSeWZIkSZIkSZpeZmwyK8kbk1zT/js+yZuSHNee+0CS77THhyY5oz1ekeRdSa5MckmSnbo5B0mSJEmSJK1tRiazkuwLvBx4CrAf8Crg+8DBbZc+YHaSzdq2C9v2rYFLqmqftu1VI1y/P8lAkoFVy++YvIlIkiRJkiRpLTMymQUcBJxdVXdV1QrgS8CTgX2TzAFWAhfTJLUOBpa241YB57THg8D84S5eVUuqqq+q+jafM3fyZiFJkiRJkqS19NLTDAu4HjgG+AFwFfB0YCFwbdvnvnpgR/zV9Nb7I0mSJEmStNGbqcmapcDpSU4CAjwHeCmwHXAC8ArgauD9wGBtwCMdF2471ycJSpIkSZIkTZEZmcyqqsuSnA5c2jZ9oqouT7Id8Dbg4qq6K8m9PLDEUJIkSZIkSRu5bEBR0oyV5AjgbOBxVXXdaH3nLXhMPe3kD09JXKP5ylF/1u0QJEmSJEmSJkSSwarqG+7cTN0AfkO9iObphy/qdiCSJEmSJEl6gMmsIZLMpnka4iuBF3Y5HEmSJEmSJHUwmfVgzwbOq6qfALcm2XdohyT9SQaSDKxafsfURyhJkiRJktSjTGY92IuA/2yP/5NhlhpW1ZKq6quqvs3nzJ3S4CRJkiRJknrZjHya4fpqn3Z4KPD4JAVsAlSSN5U75UuSJEmSJHWdlVlrOwr4TFXtWlXzq2oX4Hrg4C7HJUmSJEmSJKzMGupFwMlD2r7Ytl843ICF287hK0f92WTHJUmSJEmSJExmraWqnj5M2ymjjfnZbcs54qz/mrygxunLRx3W7RAkSZIkSZImncsMOyTZpNsxSJIkSZIkaWTTtjIryTuB31fVB9vX7wJ+B2wOPB/YAji7qt7Rnv8ysAswC/hQVS1p21cA/wYcBrw2yeHAXwF/AM6vqhOmcFqSJEmSJEkaxXSuzDoN+GuAJA8BXgj8BlgEPBlYDOyb5Klt/1dU1b5AH3Bcku3b9q2BH1bVPsC1wHOAPatqb+Cfh7txkv4kA0kGVi2/Y1ImJ0mSJEmSpAebtsmsqroBuDXJE4BnAJcDT+o4vgzYnSa5BU0C60rgEpoKrTXtq2k2eQe4A7gX+GSS5wJ3j3DvJVXVV1V9m8+ZO9FTkyRJkiRJ0gim7TLD1ieAY4CH0VRq/Qnwr1X1b52dkhxCs4xw/6q6O8kFNMsNAe6tqtUAVfWHJE9ur3MU8Drg0EmfhSRJkiRJksZluiezzgbeCWwGvJhmn6t/SnJGVa1I8gjgPmAucFubyNod2G+4iyWZDWxVVV9PchHwiymZhSRJkiRJksZlWiezqmpVku8Ct7fVVecneRxwcRKAFcBLgPOAY5NcC/yYZqnhcLYBvpJkFhDgjWPFsHDbOXz5qMM2fDKSJEmSJEkaU6qq2zGst3bj98uA51XVTyfomj+oqgPa4/cAzwK+XlVvGq7/tgseW4e8+9+GOzWlzj7ykG6HIEmSJEmSNCGSDFZV33Dnpm1lVpI9gHOAsycqkQWwJpHV6ge2W7OnliRJkiRJkrprOj/N8L+rareq+tuJvG6SFe3XrwKzgcEkL5jIe0iSJEmSJGn9TNvKrMlWVX+VZEVVLe52LJIkSZIkSWpM28qsbkrSn2QgycDK5Xd0OxxJkiRJkqSeYTJrPVTVkqrqq6q+LebM7XY4kiRJkiRJPcNkliRJkiRJkqYN98zaQAu23Yazjzyk22FIkiRJkiT1BJNZQ1TV7OGOR/Lz21bwnC9+f3KDGoezjzyo2yFIkiRJkiRNuhmxzDDJ/CTXdDsOSZIkSZIkTa4ZkcySJEmSJElSb5hJyaxNk5yR5NokZyXZKsm+Sb6XZDDJN5PsDJBkQZLz2valSXZv209PckqSHyT5RZKjujslSZIkSZIkdZpJyazHAqdW1eOA5cBrgQ8DR1XVvsBpwLvavkuA17ftJwCndlxnZ+Ag4HDgpOFulKQ/yUCSgZXLb5+MuUiSJEmSJGkYM2kD+F9V1UXt8WeBtwJ7Ad9KArAJcFOS2cABwJltO8AWHdf5clXdD/x3kp2Gu1FVLaFJiLHtgt1roiciSZIkSZKk4c2kZNbQpNKdwLKq2r+zMckc4PaqWjzCdVZ2dp+48CRJkiRJkrShZlIy61FJ9q+qi4EXA5cAr1rTlmQz4DFVtSzJ9UmeV1VnpinP2ruqrlyfmy7YdjZnH3nQBE5DkiRJkiRJI5lJe2b9GHhtkmuBbWn3ywJOTnIlcAXN8kKAo4FXtu3LgGdPfbiSJEmSJElaV6maGVs+JVlRVbOTPBw4pao2+EmESS4ATqiqgZH6bLvgcfX0d//7ht5qg33pyP26HYIkSZIkSdKESDJYVX3DnZtJywwBqKobaSqyJEmSJEmSNMPMpGWGACSZn+Sa9viSJHt2nLsgSV+SrZOcluTSJJfn/2/vzsPtrMq7j39/kjAGSBgSUcDIoBiGBHNKEYEiRV/b14oIiIoDaE1RBNHi0EorttWqtFoHBKNF0FLBUKkU3yIKChEZPAcyEEG0Bq1aJyCEoEQI9/vHflI24QwZzjn7nH2+n+va1372WutZ617n2tfG3K61nuTopn6rJJckuSPJ5cBWHZqGJEmSJEmS+tF1yax1XAq8DCDJLsAuzZbBdwPXVtVBwPOAc5JsA7wR+E1VPQt4DzC3v06TzEvSm6R39coVozANSZIkSZIkQfcns77IY1sOXwZc1ly/AHhXkkXAN4Etgd2Bw4F/AaiqJcCS/jqtqvlV1VNVPVtsN3WkYpckSZIkSdI6uu7MrHZV9dMk9yQ5ADgBOKWpCnBsVX2vvX2S0Q5RkiRJkiRJG6Crk1mNS4F3ANs3q60AvgqcluS0qqokB1bVbcD1wCuBa5PsBxwwVOd7TtvGJwlKkiRJkiSNkm7fZgitrYUvp7XlcK2/BSYDS5Isaz4DnAdMSXIH8DdA32gGKkmSJEmSpMGlqjodw6hLsqqqpgxHX9P2nFVHfuhzw9HVJvm3Y3s6HYIkSZIkSdKwSNJXVf0mOybCyixJkiRJkiR1ia5MZiV5e5LTm+uPJLm2uT4yycXN9fuSLE5yU5IZTdnMJNcmWZLkmiS7d24WkiRJkiRJWldXJrOAhcBhzXUPrXOwJjdl1wPbADdV1ezm8xuath8HLqqqA4CLgY/113mSeUl6k/SuXnnfCE5DkiRJkiRJ7bo1mdUHzE2yHbAauJFWUuswWomu3wFXtrWd2Vw/B/jX5vrzwKH9dV5V86uqp6p6tthu2ohMQJIkSZIkSU80qdMBjISqejjJcuAk4NvAEuB5wF7AHcDD9djJ92vo0r+DJEmSJElSt+nmJM5C4EzgdcBS4MNAX1VVkoHu+Tbwclqrsk5s+hjUntO29kmCkiRJkiRJo6RbtxlCKxG1C3BjVf0CeIihk1OnAScnWQK8GnjLyIYoSZIkSZKkDdG1K7Oq6hpgctvnZ7RV75Pky8AsWgm9K5NsDjwdmAssB3YELgCOGmyc/7rvtxz3b4uHOfoNd9mxszsdgiRJkiRJ0ojr5pVZ/Uprj+GXgH+vqr2BZwBTgPc1TRZW1ZzmNWgiS5IkSZIkSaOra1dmDeJI4KGq+ixAVa1J8lZaq7G+0dHIJEmSJEmSNKgJtzIL2Bfoay+oqpXAj2k97fCwJIua17v76yDJvCS9SXpXr7xv5COWJEmSJEkSMDFXZg1lYVW9aLAGVTUfmA8wbc99a1SikiRJkiRJ0oRcmfVdWoe8/68k2wG7Az/oSESSJEmSJElaLxNxZdY1wAeSvKaqPpdkM+AfgQuB32xoZ3tO28onCUqSJEmSJI2SCbcyq6oKOAY4Psn3gbuAh4C/7GhgkiRJkiRJGlJauR1trB323K+O+tAXR3ycLx47a8THkCRJkiRJGguS9FVVT391E25l1oZKi38nSZIkSZKkMaArkzRJ3pbk9uZ1RpIPJDm1rf7sJGc2129P8p0kS5K8tymbmeR7ST4H3A7s1pmZSJIkSZIkqV3XJbOSzAVOBn4fOBh4A3Ap8LK2Zi8DLk3yAmBv4CBgDjA3yeFNm72BT1bVvlX1o3XGmJekN0nv6pX3juh8JEmSJEmS9JiuS2YBhwKXV9WDVbUK+BJwGDA9yVOSzAbuq6r/Bl7QvG4DbgX2oZXEAvhRVd3U3wBVNb+qeqqqZ4vtdhjp+UiSJEmSJKkxqdMBjKIFwHHAk2mt1AII8PdV9an2hklmAg+OanSSJEmSJEkaUjeuzFoIvCTJ1km2AY5pyi4FXk4robWgaftV4HVJpgAkeWqS6R2IWZIkSZIkSeuh61ZmVdWtSS4EbmmKPlNVtwEk2Rb4aVX9T9P26iTPAm5MArAKeBWwZn3H22Palnzx2FnDOANJkiRJkiQNJFXV6RhGVJK7gZ6q+vV6tj8COLOqXpTkpObeNw/Ufoe99q/nf+jyYYh0cJe+dK8RH0OSJEmSJGksSNJXVT391XXjNkNJkiRJkiR1qa5KZiXZJslXkixOcnuSE5qq05LcmmRpkn2atgcluTHJbUm+neSZHQxdkiRJkiRJ66GrklnAC4GfVdXsqtoPuKop/3VVPRs4DzizKbsTOKyqDgT+Gnj/+g6SZF6S3iS9q++/dxjDlyRJkiRJ0mC6LZm1FHh+kg8mOayq7m/Kv9S89wEzm+vtgQVJbgc+Auy7voNU1fyq6qmqni2232GYQpckSZIkSdJQuiqZVVV3Ac+mldT6uyR/3VStbt7X8NgTHP8W+EazgutPgC1HM1ZJkiRJkiRtuElDNxk/kjwFuLeq/iXJCuBPB2m+PfDT5vqkEQ5NkiRJkiRJw6CrklnA/sA5SR4FHgbeCFw2QNsPARclOQv4ysYOuMfULbj0pXtt7O2SJEmSJEnaAKmqTsewwZKsqqopnY4DYKe9Dqg/+dCVIz7OZ1+6+4iPIUmSJEmSNBYk6auqnv7quurMLEmSJEmSJHW3cZvMSjIlyTVJbk2yNMnRTfnMJHcmuTDJXUkuTnJUkhuSfD/JQU27bZJckOSWJLe13b9vU7YoyZIke3dynpIkSZIkSXrMeD4z6yHgmKpamWQn4KYkVzR1ewHHA68DvgO8EjgUeDHwl8BLgHcD11bV65JMBW5J8nXgFOCjVXVxks2BzUZxTpIkSZIkSRrEeE5mBXh/ksOBR4GnAjOauuVVtRQgyTLgmqqqJEuBmU2bFwAvTnJm83lLYHfgRuDdSXYFvlRV33/CwMk8YB7ANjs9dSTmJkmSJEmSpH6M52TWicDOwNyqejjJ3bQSUgCr29o92vb5UR6bc4Bjq+p76/R7R5Kbgf8L/L8kf1ZV17Y3qKr5wHxoHQA/TPORJEmSJEnSEMbtmVnA9sAvm0TW84CnbeD9XwVOSxKAJAc273sAP6yqjwFfBg4YxpglSZIkSZK0Ccbdyqwkk2ittLoY+I9m62AvcOcGdvW3wD8BS5I8CVgOvAh4GfDqJA8DPwfeP1gnM6duzmdfuvsGDi1JkiRJkqSNkarxtUsuyWzg01V1UKdjAejp6ane3t5OhyFJkiRJktQ1kvRVVU9/deNqZVaSU4DTgTOGaLeqqqaMRkw/WfE7/vzyn4z4OP94zK4jPoYkSZIkSdJYN66SWVV1PnB+p+OQJEmSJElSZ4znA+AHlWRKkmuS3JpkaZKjm/KZSe5I8ukky5JcnWSrpm7PJFcl6UuyMMk+nZ2FJEmSJEmS2nVtMgt4CDimqp4NPA/4x7VPLgT2Bs6tqn2BFcCxTfl84LSqmgucCXyyv46TzEvSm6T3NyvvHck5SJIkSZIkqc242ma4gQK8P8nhwKPAU4EZTd3yqlrUXPcBM5NMAQ4BFjyW82KL/jquqvm0El88ea8DxtcJ+pIkSZIkSeNYNyezTgR2BuZW1cNJ7ga2bOpWt7VbA2xFa5XaiqqaM5pBSpIkSZIkaf11czJre+CXTSLrecDTBmtcVSuTLE9yfFUtaLYkHlBViwe7b9epm/ukQUmSJEmSpFHSdWdmJZlEa+XVxUBPkqXAa4A71+P2E4HXJ1kMLAOOHrFAJUmSJEmStMG6ZmVWklVVNQXYF/ivqvo18JwBmu+39qKq/qHtejnwwg0Z92crHubsy3+2ERFvmLOPecqIjyFJkiRJkjTWddXKrCSnAF8Azup0LJIkSZIkSRp+4zKZleTfk/QlWZZkXlvVM4EC3plk56btnCQ3JVmS5PIk05Lsk+SWtv5mNtsRSTI3yXVN/19NssuoTk6SJEmSJEkDGpfJLOB1VTUX6AFOT7IjsA3QW1X7AtcB72nafg54Z1UdACwF3lNVdwKbJ3l60+YE4NIkk4GPA8c1/V8AvG/dwZPMS9KbpPc3K+8ZwWlKkiRJkiSp3XhNZp3eHNJ+E7AbsDfwKHBpU/8vwKFJtgemVtV1TflFwOHN9RdpJbFo3i+ltbJrP+BrSRbR2q74hEcVVtX8quqpqp6tt9txuOcmSZIkSZKkAYy7A+CTHAEcBTynqn6T5JvAlv00rSG6uhRYkORLQFXV95PsDyyrqoEOjpckSZIkSVIHjbtkFrA9cF+TyNoHOLgpfxJwHHAJ8ErgW1V1f5L7khxWVQuBV9PagkhV/VeSNcBf8diKru8BOyd5TlXd2Gw7fEZVLRsomKdMneyTBiVJkiRJkkbJeExmXQWckuQOWsmnm5ryB4GDkpwF/JLHthC+Fjg/ydbAD4GT2/q6FDgHeDpAVf0uyXHAx5otipOAfwIGTGZJkiRJkiRp9KRqqN14Gsxue82ut5zz1REf58xjnjziY0iSJEmSJI0FSfqqqqe/uvF6ALwkSZIkSZImoHGZzEqyTZKvJFmc5PYkJyT5wyS3JVma5IIkWzRt707y3iS3NnX7NOU7J/lakmVJPpPkR0l26q/vzs5WkiRJkiRJa43LZBbwQuBnVTW7qvajdY7WhcAJVbU/rbOu3tjW/tdV9WzgPODMpuw9wLVVtS9wGbD7IH0/TpJ5SXqT9K5aec8ITE+SJEmSJEn9Ga/JrKXA85N8MMlhwExgeVXd1dRfBBze1v5LzXtf0xbgUFpPPqSqrgLu66/vqrp/3cGran5V9VRVz5TtdhzGaUmSJEmSJGkw4zKZ1SStnk0r8fR3wEuGuGV1876GIZ7guG7fSf56k4KVJEmSJEnSsBk0sTNWJXkKcG9V/UuSFcCbgZlJ9qqqHwCvBq4bopsbgJcBH0zyAmDaAH3/6WCdzJg62ScNSpIkSZIkjZJxmcwC9gfOSfIo8DCt87G2BxYkmQR8Bzh/iD7eC3whyauBG4GfAw8AR/TTtyRJkiRJksaAVFWnY+iI5mmHa4CzgB2Bw6pqTlv9TODK5hD4Ae2+1+x65zlXj2CkLaceM2PEx5AkSZIkSRoLkvRVVU9/deN1ZdZw2B34IrALrRVYL+1sOJIkSZIkSRrKuDsAPsnbk5zeXH8kybXN9ZFJLk7yiiRLk9ye5INt961quz4OeHdVHUhrO+JHq+o7SeYmWZxkMXDq6M5MkiRJkiRJQxl3ySxgIXBYc90DTEkyuSm7C/ggcCQwB/i9JC/ZgL4/C5xWVbMHa5RkXpLeJL2rVt67geFLkiRJkiRpY43HZFYfMDfJdsBqWoe399BKZq0AvllVv6qqR4CLgcPXp9MkU4GpVXV9U/T5gdpW1fyq6qmqninb7bDRE5EkSZIkSdKGGXfJrKp6GFgOnAR8m9ZKrecBewF3D3Zr2/WWIxSeJEmSJEmSRtC4S2Y1FgJnAtc316cAtwG3AH+QZKckmwGvAK5r7vlFkmcleRJwzLodVtUKYEWSQ5uiE0d2CpIkSZIkSdpQ4/VphguBdwM3VtWDSR4CFlbV/yR5F/ANIMBXqurLzT3vAq4EfgX0AlP66fdk4IIkBVy9PoFMnzqZU4+ZsWmzkSRJkiRJ0npJVQ3dqgskOQX4TVV9bjj7nbnXnPqrD61X3muTvP6l00d8DEmSJEmSpLEgSV9V9fRXN15XZm2wqjq/0zFIkiRJkiRp04ypM7OSvCrJLUkWJflUklOTnNNWf1KSTwzQdrOmfFWS9yVZnOSmJDOa8rOTnNlcfzPJB5v770pyWFO+dZIvJvluksuT3Jyk3yygJEmSJEmSRt+YSWYleRZwAvDcqpoDrAFW8fjD2k8ALhmg7doD27cBbqqq2bQOiH/DAENOqqqDgDOA9zRlbwLuq6pZwF8BcweIdV6S3iS9D9x/z0bMVpIkSZIkSRtjLG0z/ENayaPvJAHYCvgl8MMkBwPfB/YBbgBOHaAtwO9oHfQO0Ac8f4DxvtTWZmZzfSjwUYCquj3Jkv5urKr5wHxonZm1YdOUJEmSJEnSxhpLyawAF1XVXzyuMHkd8DLgTuDyqqq0MlhPaNt4uB471X4NA89x9Xq0kSRJkiRJ0hgyZrYZAtcAxyWZDpBkhyRPAy4HjgZeAVwyRNtNdQOtxBlJZgH7D0OfkiRJkiRJGiZjZkVSVX03yVnA1UmeBDwMnFpVP0pyBzCrqm4ZrC3wo00M45PARUm+S2sl2DLg/sFu2GnqJF7/0umbOKwkSZIkSZLWRx7bkTd2JXkJrRVaz6qqOzfy/ruq6rtDtNsMmFxVDyXZE/g68Myq+t1A9+yx55z62w99bUND2mAnHrvziI8hSZIkSZI0FiTpq6qe/urG0jbDwbwC+FbzvjFeAsxaj3ZbA99KsphW8uxNgyWyJEmSJEmSNLrGfDIryRRaTxl8PfDypuyIJFe2tflEkpOa6w8k+W6SJUn+IckhwIuBc5IsSrJn87oqSV+ShUn2abr6OPBt4EFgCrDNqE1UkiRJkiRJQxozZ2YN4mjgqqq6K8k9SeYO1DDJjsAxwD7NUw+nVtWKJFcAV1bVZU27a4BTqur7SX6f1llZRzbd7EIrebYPcAVw2chNTZIkSZIkSRtizK/M4vFPMbyEwbca3g88BPxzkpcCv1m3QbPS6xBgQZJFwKdoJbDW+veqerQ5X2tGf4MkmZekN0nvypX3bOh8JEmSJEmStJHG9MqsJDvQWjG1f5ICNgMK+DKPT8RtCVBVjyQ5CPhD4DjgzTy24mqtJwErqmrOAMOubg+hvwZVNR+YD60D4DdgSpIkSZIkSdoEY31l1nHA56vqaVU1s6p2A5bTintWki2STKWVvFq76mr7qvp/wFuB2U0/DwDbAlTVSmB5kuObe5JkNpIkSZIkSRrzxvTKLFpbCj+4Ttm/0ToI/ovA7bSSW7c1ddsCX06yJa1VVW9ryi8BPp3kdFoJshOB85KcBUxu6hdvTIA7TJvEicfuvDG3SpIkSZIkaQOlyl1ym2LPPefUBz/09REf57hjdxrxMSRJkiRJksaCJH1V1dNf3VjfZrjBkpyd5Mxh6uubSfr9w0mSJEmSJGn0dV0yS5IkSZIkSd1r3CezkrwmyZIki5N8fp26OUluauovTzKtKf/fFVdJdkpyd3O9VZJLktyR5HJgq9GejyRJkiRJkgY2rpNZSfYFzgKOrKrZwFvWafI54J1VdQCwFHjPEF2+EfhNVT2raTt3gHHnJelN0rty5T2bNAdJkiRJkiStv3GdzAKOBBZU1a8BquretRVJtgemVtV1TdFFwOFD9Hc48C9NX0uAJf01qqr5VdVTVT3bbbfjJk5BkiRJkiRJ62u8J7M21iM8NvctOxmIJEmSJEmS1t+kTgewia4FLk/y4aq6J8kOayuq6v4k9yU5rKoWAq8G1q7SupvWFsJbgOPa+rseeCVwbZL9gAOGCmDatEkcd+xOwzMbSZIkSZIkDWpcJ7OqalmS9wHXJVkD3EYrUbXWa4Hzk2wN/BA4uSn/B+CLSeYBX2lrfx7w2SR3AHcAfSM8BUmSJEmSJG2AVFWnYxg1Sb5dVYcMZ5977TmnPvyBrw9nl/168fGu/pIkSZIkSRNDkr6q6umvrqvOzEoy6Eqz4U5kSZIkSZIkaXSNiW2GSWYCVwE3AYcA3wE+C7wXmA6cCPwAuADYA/gNMK+qliQ5G9izKf9xku8Buzefdwf+qao+1oyzqqqmJDkCOBv4NbAfre2Er6qqSvLHwIeBB4EbgD2q6kUj+xeQJEmSJEnS+hgTyazGXsDxwOtoJbNeCRwKvBj4S+C/gduq6iVJjgQ+B8xp7p0FHFpVv22SW/sAzwO2Bb6X5Lyqenid8Q4E9gV+Ritp9dwkvcCngMOranmSL/QXaHPW1jyAnXfadRimLkmSJEmSpPUxlrYZLq+qpVX1KLAMuKZaB3otBWbSSmx9HqCqrgV2TLJdc+8VVfXbtr6+UlWrq+rXwC+BGf2Md0tV/aQZb1Ezxj7AD6tqedOm32RWVc2vqp6q6tluux03fsaSJEmSJEnaIGMpmbW67frRts+PMvQKsgcH6WvNAPevTxtJkiRJkiSNIeMpgbOQ1tlZf9ucefXrqlqZZDjH+B6wR5KZVXU3cMJQN0ydNsknDUqSJEmSJI2S8ZTMOhu4IMkSWgfAv3a4B2jO3HoTcFWSB2md3SVJkiRJkqQxIq1jqSaWJN8Ezqyq3n7qplTVqrSWfJ0LfL+qPjJQX3vvOac+9v6vj1ywjT86wdVfkiRJkiRpYkjSV1U9/dWNpTOzxoo3JFlE6xD67YFPJdmssyFJkiRJkiQJxmkyK8nMJLe3fT4zydlJvpnkg0luSXJXksOa+q2SXJLkjiSXA1u13fuCJDcmuTXJAuDTVTUH2Br4CfAt4PhRnaAkSZIkSZL6NS6TWUOYVFUHAWcA72nK3gj8pqqe1ZTNBUiyE3AWcFRVPRvoBd7W1tc9VfXsqrqkfYAk85L0JuldufKekZ2NJEmSJEmS/td4OgB+fX2pee8DZjbXhwMfA6iqJc0h8gAHA7OAG5qnIm4O3NjW16X9DVBV84H50DozaxhjlyRJkiRJ0iDGazLrER6/qmzLtuvVzfsahp5fgK9V1SsGqH9w48KTJEmSJEnSSBivyaxfANOT7AisAl4EXDVI++uBVwLXJtkPOKApvwk4N8leVfWDJNsAT62qu9Y3kO2nTfJJg5IkSZIkSaNkXCazqurhJH8D3AL8FLhziFvOAz6b5A7gDlpbEKmqXyU5CfhCki2atmcB653MkiRJkiRJ0uhJlUc+tUuyqqqmrG/7Z+wxpz75d18byZAAOOqVO4/4GJIkSZIkSWNBkr6q6umvrhufZihJkiRJkqQuZTJLkiRJkiRJ44bJrI2QZF6S3iS99z9wT6fDkSRJkiRJmjBMZm2EqppfVT1V1bP9tjt2OhxJkiRJkqQJw2SWJEmSJEmSxo1JnQ5gvNtuh0k+aVCSJEmSJGmUuDJrEEkWdToGSZIkSZIkPWZCrMxKsqqqpiR5CvCxqjouyUlAT1W9ub1tVU1pu54zVN8P3PsI1/3Lr4Y75Cf4g1e5+kuSJEmSJGlCJLPWqqqfAcd1Og5JkiRJkiRtnAm1zTDJzCS391P+f5PcmGSnJC9orm9NsiDJlP76kiRJkiRJ0uibUMms/iQ5BngX8MdN0VnAUVX1bKAXeFs/98xL0puk9/6V94xesJIkSZIkSRPchNpm2I8jgR7gBVW1MsmLgFnADUkANgduXPemqpoPzAd45h5zavTClSRJkiRJmtgmejLrv4A9gGfQWoUV4GtV9YqORiVJkiRJkqR+TfRthj8CjgU+l2Rf4CbguUn2AkiyTZJndDJASZIkSZIkPWair8yiqu5MciKwAPgT4CTgC0m2aJqcBdw10P3b7jCJP3jVziMepyRJkiRJkiBVHvm0KfZ5+py64L1fG/FxDnmNCTNJkiRJkjQxJOmrqp7+6ib6NkNJkiRJkiSNI12TzEryqiS3JFmU5FNJTk1yTlv9SUk+MUDbzZryVUnel2RxkpuSzOjUfCRJkiRJkvREXZHMSvIs4ATguVU1B1gDrAKOaWt2AnDJAG1PbNpsA9xUVbOB64E3DDDevCS9SXpXPHDPCMxIkiRJkiRJ/emWA+D/EJgLfCcJwFbAL4EfJjkY+D6wD3ADcOoAbQF+B1zZXPcBz+9vsKqaD8yH1plZwz8dSZIkSZIk9adbklkBLqqqv3hcYfI64GXAncDlVVVpZbCe0LbxcD12Iv4auufvI0mSJEmS1BW6YpshcA1wXJLpAEl2SPI04HLgaOAVwCVDtJUkSZIkSdIY1xUrj6rqu0nOAq5O8iTgYeDUqvpRkjuAWVV1y2BtgR9tzNhTdpzEIa/ZeXgmIkmSJEmSpEHlsV112hjPmjmnLnrP1SM+zkEnTx/xMSRJkiRJksaCJH1V1dNfXbdsM5QkSZIkSdIE0NXJrCR/k+SMts/vS/KWJOckuT3J0iQnNHVHJLmyre0nkpw0+lFLkiRJkiRpIF2dzAIuAF4D0JyP9XLgJ8AcYDZwFHBOkl06FaAkSZIkSZLWX1ccAD+Qqro7yT1JDgRmALcBhwJfqKo1wC+SXAf8HrByfftNMg+YB/DkHXcd/sAlSZIkSZLUr25fmQXwGeAk4GRaK7UG8giP/3tsOVDDqppfVT1V1TN1yo7DEqQkSZIkSZKGNhGSWZcDL6S1+uqrwELghCSbJdkZOBy4BfgRMCvJFkmmAn/YoXglSZIkSZI0gK7eZghQVb9L8g1gRVWtSXI58BxgMVDAO6rq5wBJvgjcDiyntSVxSNvsNImDTp4+MsFLkiRJkiTpcVJVnY5hRDUHv98KHF9V3x/u/nt6eqq3t3e4u5UkSZIkSZqwkvRVVU9/dV29MivJLOBKWlsNn5Xk2Kr6wAbcfyFwZVVdNlCb3/z6EW77zC83OdahHPinrv6SJEmSJEnq6mRWVX0X2KOt6IpOxSJJkiRJkqRN1xUHwCeZmeTOJBcmuSvJxUmOSnJDku8nOSjJSUk+0bS/MMnHknw7yQ+THNeUJ8knknwvydcBl0NJkiRJkiSNIV2RzGrsBfwjsE/zeiVwKHAm8Jf9tN+lqX8RsHbr4THAM4FZwGuAQ/obKMm8JL1Jeu974J7hnIMkSZIkSZIG0U3JrOVVtbSqHgWWAddU63T7pcDMftr/e1U92mxFnNGUHQ58oarWVNXPgGv7G6iq5ldVT1X1TNt2x+GfiSRJkiRJkvrVTcms1W3Xj7Z9fpT+zwZrb5+RCkqSJEmSJEnDp6sPgN8I1wN/luQiWudlPQ/418Fu2HqnST5pUJIkSZIkaZSYzHq8y4Ejge8CPwZu7Gw4kiRJkiRJatcVyayquhvYr+3zSevWJZkKbN0UX0jrYPjLmjZTmvcC3rwhY//2Vw9z+6d+sbGhr7f9/mzG0I0kSZIkSZK6XDedmTWUqcCbOh2EJEmSJEmSNt5ESmZ9ANgzySLgHGBKksuS3Jnk4rQcmeTf196Q5PlJLu9QvJIkSZIkSVrHREpmvQv4r6qaA7wdOBA4A5gF7AE8F/gGsE+SnZt7TgYuWLejJPOS9CbpvW/VvaMQuiRJkiRJkmBiJbPWdUtV/aSqHgUWATObM7M+D7yqOWPrOcB/rntjVc2vqp6q6pk2ZYfRjFmSJEmSJGlC64oD4DfS6rbrNTz2t/gs8B/AQ8CCqnpktAOTJEmSJElS/yZSMusBYNuhGlXVz5L8DDgLOGqo9lvtPNknDUqSJEmSJI2SCZPMqqp7ktyQ5Hbgt8AvBml+MbBzVd0xOtFJkiRJkiRpfYyZZFZzRtUrq+qTSY4AzqyqFw3nGFX1yrbxZia5var2q6o3r9P0T4Evrk+fD/3yYb537mB5seHxzFNd/SVJkiRJkjSWDoCfCryp00Ek6QN6gBs7HYskSZIkSZIebywlsz4A7JlkEXAOMCXJZUnuTHJxkgAk+cMktyVZmuSCJFs05Xcn2am57knyzeZ65yRfS7IsyWeS/GhtO2CzJJ9u6q5OshXw97RWrF2YZFFTJkmSJEmSpDFgLCWz3gX8V1XNAd4OHAicAcwC9gCem2RL4ELghKran1bS6Y1D9Pse4Nqq2he4DNi9rW5v4NymbgVwbFVdBvQCJ1bVnKr67bodJpmXpDdJ732r7t3I6UqSJEmSJGlDjaVk1rpuqaqfVNWjwCJgJvBMYHlV3dW0uQg4fIh+DgUuAaiqq4D72uqWV9Wi5rqvGWNIVTW/qnqqqmfalB3W5xZJkiRJkiQNg7GczFrddr2GoQ+rf4TH5rPlCI0hSZIkSZKkDhpLyZsHgG2HaPM9YGaSvarqB8CrgeuauruBucB/Ase23XMD8DLgg0leAEwbplgA2HL6ZJ80KEmSJEmSNErGzMqsqroHuCHJ7bQOgO+vzUPAycCCJEuBR4Hzm+r3Ah9N0ktrlRVt5S9o+j0e+DmtZNVgLgTO9wB4SZIkSZKksSVV1ekYRlTztMM1VfVIkucA5wF7VdWUtjYnAT1V9eYN7X//3WfXl8/86rDFO5A9Tn/yiI8hSZIkSZI0FiTpq6qe/urG0jbDkbI78MUkTwJ+B7wB+EZnQ5IkSZIkSdLG6PpkVlV9HziwvSzJgO2T7Exr6+LuTdEZVXXDiAUoSZIkSZKk9db1yawBbJVkUdvnHYArmuuPAh+pqm8l2R34KvCs9puTzAPmATxl2lNHPlpJkiRJkiQBEzeZ9duqmrP2w9ozs5qPRwGz2lZvbZdkSlWtWltQVfOB+dA6M2s0ApYkSZIkSdLETWYN5knAwc2TEyVJkiRJkjSGPKnTAYxBVwOnrf2QZE7nQpEkSZIkSVI7V2Y90enAuUmW0Pr7XA+cMlDjLaZPZo/TnzxasUmSJEmSJE1oqereI5/WnoVVVW9Ocjawqqr+YQPuX1VVUwZrc8Bus+srZ3x10wJdD7v9uQkzSZIkSZI0MSTpq6qe/urcZihJkiRJkqRxY1wms5K8JsmSJIuTfD7JnyS5OcltSb6eZMYQ9++Z5KokfUkWJtmnKX96khuTLE3yd6MzG0mSJEmSJK2vcZfMSrIvcBZwZFXNBt4CfIvWEwgPBC4B3jFEN/OB06pqLnAm8Mmm/KPAeVW1P/A/g8QwL0lvkt57H7xn0yYkSZIkSZKk9TYeD4A/ElhQVb8GqKp7k+wPXJpkF2BzYPlANyeZAhwCLEiytniL5v25wLHN9eeBD/bXR1XNp5UQ44DdZnfvoWOSJEmSJEljzHhMZvXn48CHq+qKJEcAZw/S9knAiqqaM0C9ySlJkiRJkqQxatxtMwSuBY5PsiNAkh2A7YGfNvWvHezmqloJLE9yfHN/ksxuqm8AXt5cnzjcgUuSJEmSJGnTjLuVWVW1LMn7gOuSrAFuo7USa0GS+2glu54+RDcnAuclOQuYTOucrcW0zt/61yTvBL68PvFsPmMyu/35kzdqLpIkSZIkSdowqXJXXZJvV9UhSWYCh1TVv67vvbN3nV1Xnf7/Ri64xi7veOqIjyFJkiRJkjQWJOmrqp7+6sbjNsNhV1WHNJczgVd2MBRJkiRJkiQNwmQWkGRVc/kB4LAki5K8tZMxSZIkSZIk6YnG3ZlZI+xdwJlV9aJOByJJkiRJkqQncmXWRkgyL0lvkt57Hryn0+FIkiRJkiRNGCazNkJVza+qnqrq2XGbHTsdjiRJkiRJ0oRhMuvxHgC2XfshyVOTXNPBeCRJkiRJktTGM7MebwmwJsli4EJgIfDIYDdMfvJkdnnHU0chNEmSJEmSJJnMAqpqSvP+MHDk2vIkbwbOHezeh3/+O35+zt0jGh/Ak98+c8THkCRJkiRJGutMZg2iqj7R6RgkSZIkSZL0GM/MWg9JTPpJkiRJkiSNAeM2mZVkZpI7knw6ybIkVyfZKsmeSa5K0pdkYZJ9kmyf5EdJntTcu02S/04yub/2TZsLk5yf5GbgQx2drCRJkiRJkoBxnMxq7A2cW1X7AiuAY4H5wGlVNRc4E/hkVd0PLAL+oLnvRcBXmzOyntC+rf9dgUOq6m3tgyaZl6Q3Se89D94zYpOTJEmSJEnS44337XPLq2pRc90HzAQOARYkWdtmi+b9UuAE4BvAy4FPJpkySHuABVW1Zt1Bq2o+rSQYs3c9oIZpLpIkSZIkSRrCeE9mrW67XgPMAFZU1Zx+2l4BvD/JDsBc4Fpgm0HaAzw4fKFKkiRJkiRpU433ZNa6VgLLkxxfVQvSWm51QFUtrqpVSb4DfBS4sllxtTJJv+3Xd8DJT96cJ7995ohMRpIkSZIkSY833s/M6s+JwOuTLAaWAUe31V0KvKp5X5/2kiRJkiRJGkNS5ZFPm2L2bvvXV8/40oiP8+Q/33vEx5AkSZIkSRoLkvRVVU9/dd24MkuSJEmSJEldasIms5LMTHJHkk8nWZbk6iRbJZmT5KYkS5JcnmRap2OVJEmSJElSy4RNZjX2Bs6tqn2BFcCxwOeAd1bVAcBS4D3r3pRkXpLeJL33PHjvaMYrSZIkSZI0oU30ZNbyqlrUXPcBewJTq+q6puwi4PB1b6qq+VXVU1U9O26zw+hEKkmSJEmSpAmfzFrddr0GmNqhOCRJkiRJkrQeJnU6gDHmfuC+JIdV1ULg1cB1g90wecYWPmlQkiRJkiRplJjMeqLXAucn2Rr4IXByh+ORJEmSJElSY0Ils5KsqqopAFV1N7Df2rqq+oe2pgcneQlwV1XdN1ifD//iIX7+4e+OQLSP9+S3zRrxMSRJkiRJksa6iX5m1mBeAphBkiRJkiRJGkMmfDIryZ5JrkrSl2Rhkn2SHAK8GDgnyaIke3Y6TkmSJEmSJE2wbYYDmA+cUlXfT/L7wCer6sgkVwBXVtVl696QZB4wD+Cp03YZ3WglSZIkSZImsAmdzEoyBTgEWJBkbfEWQ91XVfNpJcGYvdt+NWIBSpIkSZIk6XEmdDKL1jbLFVU1p9OBSJIkSZIkaWgTOplVVSuTLE9yfFUtSGt51gFVtRh4ANh2qD4mz9jSJw1KkiRJkiSNkol2APzWSX7S9nobcCLw+iSLgWXA0U3bS4C3J7nNA+AlSZIkSZLGhq5YmZVkJq3D2vcbrF1VDZS8e2E/bW8Ahlxy9fAvfssvPrJkfcLcJDPeesCIjyFJkiRJkjTWTbSVWestSVck+iRJkiRJkrpJNyWzNkvy6STLklydZKskeya5KklfkoVJ9gFI8idJbm62EH49yYym/Owkn09yA/D5js5GkiRJkiRJT9BNyay9gXOral9gBXAsMB84rarmAmcCn2zafgs4uKoOpHU21jva+pkFHFVVrxhooCTzkvQm6b33wfuGfyaSJEmSJEnqVzdtpVteVYua6z5gJnAIsKD1kEIAtmjedwUuTbILsDmwvK2fK6rqt4MNVFXzaSXKmL3bvjUcwUuSJEmSJGlo3ZTMWt12vQaYAayoqjn9tP048OGquiLJEcDZbXUPjlB8kiRJkiRJ2kTdlMxa10pgeZLjq2pBWsuzDqiqxcD2wE+bdq/dlEEmz9jKJw1KkiRJkiSNkm46M6s/JwKvT7IYWAYc3ZSfTWv7YR/w64FuTrJopAOUJEmSJEnS+kuVRz4lWVVVU/opvxC4sqouG+je2bvNqqv/fOQffDjjjLkjPoYkSZIkSdJYkKSvqnr6q+v2lVmSJEmSJEnqIhMumZXkbUlub15nrFOXJJ9I8r0kXwemdyZKSZIkSZIk9aebD4B/giRzgZOB3wcC3JzkurYmxwDPBGbRehrid4EL+ulnHjAPYNdpTx7hqCVJkiRJkrTWRFuZdShweVU9WFWrgC8Bh7XVHw58oarWVNXPgGv766Sq5ldVT1X17LDNtJGPWpIkSZIkScDES2ZJkiRJkiRpHJtoyayFwEuSbJ1kG1rbChe21V8PnJBksyS7AM/rRJCSJEmSJEnq34Q6M6uqbk1yIXBLU/SZqrotydomlwNH0jor68fAjUP1OXnG1sw4Y+4IRCtJkiRJkqR1dVUyK8lLaCWknlVVdyaZCVxZVfsl6QFeU1WnAx9uv6+qpjTvBbx5Q8Z8+JcP8ouP3jwc4Q9qxlt+f8THkCRJkiRJGuu6bZvhK4BvNe+PU1W9TSJLkiRJkiRJ41TXJLOSTKH1tMLXAy/vp/6IJFeubZvks0mWJlmS5Nim/AVJbkxya5IFTZ+SJEmSJEkaI7ommQUcDVxVVXcB9yQZ7CCrvwLur6r9q+oA4NokOwFnAUdV1bOBXuBt/d2cZF6S3iS9965aMbyzkCRJkiRJ0oC6KZn1CuCS5voS+tlq2OYo4Ny1H6rqPuBgYBZwQ5JFwGuBp/V3c1XNr6qequrZYcrUTY9ckiRJkiRJ66UrDoBPsgOtpxDun6SAzYCiLWG1Pt0AX6uqwZJgkiRJkiRJ6qBuWZl1HPD5qnpaVc2sqt2A5cBuA7T/GnDq2g9JpgE3Ac9NsldTtk2SZ4xw3JIkSZIkSdoAXbEyi9aWwg+uU/ZvwF8M0P7vgHOT3A6sAd5bVV9KchLwhSRbNO3OAu4abODJ07dhxlt+f6MDlyRJkiRJ0vpLVXU6hg2WZCZwZVXtN8Lj3A30VNWvB2oze/d96uo//+eRDAOAGW957oiPIUmSJEmSNBYk6auqnv7qumWb4SZL0i2r1CRJkiRJkrrWeE5mbZbk00mWJbk6yVZJ9kxyVZK+JAuT7AOQ5E+S3JzktiRfTzKjKT87yeeT3AB8PsmOTV/LknyG1qHwkiRJkiRJGiPGczJrb+DcqtoXWAEcC8wHTququcCZwCebtt8CDq6qA4FLgHe09TMLOKp5iuF7gG81fV4O7D4aE5EkSZIkSdL6Gc9b65ZX1aLmug+YCRwCLEj+d0HV2oPcdwUuTbILsDmtJx2udUVV/ba5Phx4KUBVfSXJff0NnGQeMA9g12kzhmMukiRJkiRJWg/jeWXW6rbrNcAOwIqqmtP2elZT/3HgE1W1P/BnwJZt9z64oQNX1fyq6qmqnh2mTN3I8CVJkiRJkrShxnMya10rgeVJjgdIy+ymbnvgp831awfp43rglc39fwRMG6FYJUmSJEmStBHG8zbD/pwInJfkLGAyrfOxFgNn09p+eB9wLfD0Ae5/L/CFJMuAbwM/HmrAydOnMOMtzx2G0CVJkiRJkjSUVFWnYxjXenp6qre3t9NhSJIkSZIkdY0kfVXV019dt63M2ihJvgmcWVUbnJV6+JcP8IuPXTf8Qa1jxul/MOJjSJIkSZIkjXXddGaWJEmSJEmSuty4TWYlmZnkziQXJrkrycVJjkpyQ5LvJzmoed2Y5LYk307yzOberZJckuSOJJcDW7X1+4LmnluTLEgypWOTlCRJkiRJ0uOM22RWYy/gH4F9mtcrgUOBM4G/BO4EDquqA4G/Bt7f3PdG4DdV9SzgPcBcgCQ7AWcBR1XVs4Fe4G3rDppkXpLeJL33rrp/BKcnSZIkSZKkduP9zKzlVbUUoHkC4TVVVUmWAjOB7YGLkuwNFK0nHAIcDnwMoKqWJFnSlB8MzAJuSAKwOXDjuoNW1XxgPsDs3Z/pCfqSJEmSJEmjZLwns1a3XT/a9vlRWnP7W+AbVXVMkpnAN4foL8DXquoVwxynJEmSJEmShsF4T2YNZXvgp831SW3l19Paknhtkv2AA5rym4Bzk+xVVT9Isg3w1Kq6a6ABJk/f1icNSpIkSZIkjZLxfmbWUD4E/H2S23h84u48YEqSO4C/AfoAqupXtJJeX2i2Ht5I6ywuSZIkSZIkjQGp6v4jn5othldW1X7D3fec3Z9ZV7/9vOHu9gmmn3bkiI8hSZIkSZI0FiTpq6qe/uq6fWWWJEmSJEmSushESmZtluTTSZYluTrJVknekOQ7SRYn+bckWwMkOT7J7U359Z0OXJIkSZIkSS0TKZm1N3BuVe0LrACOBb5UVb9XVbOBO4DXN23/Gvg/TfmL1+0oybwkvUl671m1YlSClyRJkiRJ0sRKZi2vqkXNdR8wE9gvycIkS4ETgX2b+huAC5O8Adhs3Y6qan5V9VRVz45Tpo544JIkSZIkSWqZSMms1W3Xa2g93fBC4M1VtT/wXmBLgKo6BTgL2A3oS7Lj6IYqSZIkSZKk/kzqdAAdti3wP0km01qZ9VOAJHtW1c3AzUn+iFZS657+Opg0fVufNChJkiRJkjRKJnoy66+Am4FfNe/bNuXnJNkbCHANsLgz4UmSJEmSJKldqqrTMYxrc3Z/Rl39jk+M+DjT3/yCER9DkiRJkiRpLEjSV1U9/dVNpDOzJEmSJEmSNM51fTIryduS3N68zkgyM8kdST6dZFmSq5Ns1bTdM8lVSfqapxzu0+n4JUmSJEmS9JiuTmYlmQucDPw+cDDwBmAasDdwblXtC6wAjm1umQ+cVlVzgTOBTw7Q77wkvUl671l1/8hOQpIkSZIkSf+r2w+APxS4vKoeBEjyJeAwYHlVLWra9AEzk0wBDgEWJFl7/xb9dVpV82klvpiz+zM8dEySJEmSJGmUdHsyayCr267XAFvRWqW2oqrmdCQiSZIkSZIkDanbk1kLgQuTfAAIcAzwamDeug2ramWS5UmOr6oFaS3POqCqFg82wKTp2/mkQUmSJEmSpFHS1WdmVdWtwIXALcDNwGeA+wa55UTg9UkWA8uAo0c6RkmSJEmSJK2/VHX/kU9JVlXVlA1ofwTwu6r69lBt5+y+d139jo9uQnTrZ/qb/3jEx5AkSZIkSRoLkvRVVU9/dV29MmsTHEHrMHhJkiRJkiSNIV2RzEry9iSnN9cfSXJtc31kkoub6/clWZzkpiQzmrI/SXJzktuSfD3JjCQzgVOAtyZZlOSwDk1LkiRJkiRJ6+iKZBatg97XJp16gClJJjdl1wPbADdV1ezm8xuatt8CDq6qA4FLgHdU1d3A+cBHqmpOVS1cd7Ak85L0Jum9Z9X9IzkvSZIkSZIktemWZFYfMDfJdsBq4EZaSa3DaCW6fgdc2dZ2ZnO9K/DVJEuBtwP7rs9gVTW/qnqqqmfHKdsP2yQkSZIkSZI0uK5IZlXVw8By4CTg27QSWM8D9gLuAB6ux066XwNMaq4/DnyiqvYH/gzYchTDliRJkiRJ0gbqimRWYyFwJq1thAtpnXt1Ww3+uMbtgZ82169tK38A2HYkgpQkSZIkSdLGmzR0k3FjIfBu4MaqejDJQ03ZYM4GFiS5D7gWeHpT/h/AZUmOBk7r79ystSZN357pb/7jTQ5ekiRJkiRJQ8vgC5fGtySrqmrKSI4xZ/e96up3fngkhwBg+qkvHvExJEmSJEmSxoIkfVXV019dN20zlCRJkiRJUpcb18msJG9Pcnpz/ZEk1zbXRya5uLl+X5LFSW5KMqMp2znJvyX5TvN6blN+dpILknwzyQ/X9i1JkiRJkqSxYVwns2idiXVYc90DTEkyuSm7HtgGuKmqZjef39C0/Sjwkar6PeBY4DNtfe4D/B/gIOA9TX+Pk2Rekt4kvfesWjkC05IkSZIkSVJ/xvsB8H3A3CTbAauBW2kltQ4DTgd+B1zZ1vb5zfVRwKwka/vZLsnas7W+UlWrgdVJfgnMAH7SPmhVzQfmQ+vMrBGYlyRJkiRJkvoxrpNZVfVwkuXAScC3gSXA84C9gDuAh+uxE+7X8Nh8nwQcXFUPtffXJLdWtxW13yNJkiRJkqQOG+/bDKG11fBMWtsIFwKnALfV4I9pvBo4be2HJHNGMkBJkiRJkiQNj25YdbQQeDdwY1U9mOShpmwwpwPnJllC629wPa0k2AabNH0q00998cbcKkmSJEmSpA2UwRcwbULHrScBvhF4MvDBqvrAiAw0ApKcBFxdVT8bqu2c3feqq9/5oRGPafqpLx3xMSRJkiRJksaCJH1V1dNf3UiuzHoTcFRV/aS/yiSTquqRERx/U5wE3A4MmcySJEmSJEnS6BmRM7OSnA/sAfxnkrcm+URTfmGS85PcDHyo+XxekpuS/DDJEUkuSHJHkgvb+jsvSW+SZUne21Z+d5K/T7KoqX92kq8m+a8kp7S1e3uS7yRZsvb+JDObcT7d9Ht1kq2SHEfriYgXN/1uNRJ/I0mSJEmSJG24EUlmVdUptFY1PQ+4b53qXYFDquptzedpwHOAtwJXAB8B9gX2bzuY/d3N0rIDgD9IckBbfz+uqjm0zsm6EDgOOBhYm7R6AbA3cBAwB5ib5PDm3r2Bc6tqX2AFcGxVXQb0AidW1Zyq+u2m/C0kSZIkSZI0fDpxAPyCqlrT9vk/qqqSLAV+UVVLAZIsA2YCi4CXJZlHK95dgFnAkub+K5r3pcCUqnoAeCDJ6iRTgRc0r9uadlNoJbF+DCyvqkVNeV8z3pCaWOYB7Dptp/WdtyRJkiRJkjZRJ5JZD67zeXXz/mjb9drPk5I8HTgT+L2quq/Zfrjl+t4PBPj7qvpU+6BJZq7Tfg2wXlsKq2o+MB9aB8Cvzz2SJEmSJEnadCOyzXCYbUcrAXZ/khnAH23g/V8FXpdkCkCSpyaZPsQ9DwDbbnCkkiRJkiRJGlGdWJm1QapqcZLbgDuB/wZu2MD7r07yLODGJACrgFfRWok1kAuB85P8FnjOYOdmTZo+lemnvnRDQpIkSZIkSdJGSpW75DbFnKftWVe/8/0jPs70N50w4mNIkiRJkiSNBUn6mocBPsF42Ga4UZKsGqD8lCSvaa5PSvKU0Y1MkiRJkiRJG2vMbzMcblV1ftvHk4DbgZ91JhpJkiRJkiRtiHGbzErydmB1VX0syUeA2VV1ZJIjgdc3bd4HvAj4LXB0Vf0iydm0zs26G+gBLl57NhYwC/gwMAX4NXBSVf3P6M5MkiRJkiRJAxnP2wwXAoc11z3AlCSTm7LrgW2Am6pqdvP5De03V9VlQC9wYlXNAR4BPg4cV1VzgQuA9/U3cJJ5SXqT9N6zauWwT0ySJEmSJEn9G7crs4A+YG6S7YDVwK20klqHAacDvwOubGv7/CH6eyawH/C15qmHmwH9rsqqqvnAfGgdAL9Js5AkSZIkSdJ6G7fJrKp6OMlyWudefRtYAjwP2Au4A3i4HntU4xqGnmuAZVX1nJGJWJIkSZIkSZtq3CazGguBM4HXAUtpnXfVV1XVrK4aygPAts3194Cdkzynqm5stiw+o6qWDdbBpJ2nMf1NJ2z0BCRJkiRJkrT+uiGZ9W7gxqp6MMlDTdn6uhA4v+0A+OOAjyXZntbf5p+AQZNZfX19q5J8byNil0bDTrQeZiCNNX43NZb5/dRY5XdTY5XfTY1lfj/Hr6cNVJHHduJpYyTpraqeTsch9cfvp8Yqv5say/x+aqzyu6mxyu+mxjK/n91pPD/NUJIkSZIkSROMySxJkiRJkiSNGyazNt38TgcgDcLvp8Yqv5say/x+aqzyu6mxyu+mxjK/n13IM7MkSZIkSZI0brgyS5IkSZIkSeOGySxJkiRJkiSNGyazNkGSFyb5XpIfJHlXp+PRxJVktyTfSPLdJMuSvKUp3yHJ15J8v3mf1ulYNTEl2SzJbUmubD4/PcnNze/npUk273SMmpiSTE1yWZI7k9yR5Dn+dmosSPLW5r/ptyf5QpIt/e1UpyS5IMkvk9zeVtbvb2VaPtZ8T5ckeXbnIle3G+C7eU7z3/UlSS5PMrWt7i+a7+b3kvyfjgStYWEyayMl2Qw4F/gjYBbwiiSzOhuVJrBHgD+vqlnAwcCpzffxXcA1VbU3cE3zWeqEtwB3tH3+IPCRqtoLuA94fUeikuCjwFVVtQ8wm9b31N9OdVSSpwKnAz1VtR+wGfBy/O1U51wIvHCdsoF+K/8I2Lt5zQPOG6UYNTFdyBO/m18D9quqA4C7gL8AaP599HJg3+aeTzb/rtc4ZDJr4x0E/KCqflhVvwMuAY7ucEyaoKrqf6rq1ub6AVr/GHsqre/kRU2zi4CXdCRATWhJdgX+L/CZ5nOAI4HLmiZ+N9URSbYHDgf+GaCqfldVK/C3U2PDJGCrJJOArYH/wd9OdUhVXQ/cu07xQL+VRwOfq5abgKlJdhmVQDXh9PfdrKqrq+qR5uNNwK7N9dHAJVW1uqqWAz+g9e96jUMmszbeU4H/bvv8k6ZM6qgkM4EDgZuBGVX1P03Vz4EZnYpLE9o/Ae8AHm0+7wisaPsfGf5+qlOeDvwK+GyzDfYzSbbB3051WFX9FPgH4Me0klj3A33426mxZaDfSv+dpLHkdcB/Ntd+N7uIySypiySZAvwbcEZVrWyvq6oCqiOBacJK8iLgl1XV1+lYpH5MAp4NnFdVBwIPss6WQn871QnN2UNH00q4PgXYhiduo5HGDH8rNRYleTet41gu7nQsGn4mszbeT4Hd2j7v2pRJHZFkMq1E1sVV9aWm+Bdrl3U377/sVHyasJ4LvDjJ3bS2Yx9J64yiqc3WGfD3U53zE+AnVXVz8/kyWsktfzvVaUcBy6vqV1X1MPAlWr+n/nZqLBnot9J/J6njkpwEvAg4sUm2gt/NrmIya+N9B9i7earM5rQOkruiwzFpgmrOIPpn4I6q+nBb1RXAa5vr1wJfHu3YNLFV1V9U1a5VNZPW7+S1VXUi8A3guKaZ3011RFX9HPjvJM9siv4Q+C7+dqrzfgwcnGTr5r/xa7+b/nZqLBnot/IK4DXNUw0PBu5v244ojbgkL6R1xMWLq+o3bVVXAC9PskWSp9N6SMEtnYhRmy6PJSm1oZL8Ma2zYDYDLqiq93U2Ik1USQ4FFgJLeexcor+kdW7WF4HdgR8BL6uqdQ/vlEZFkiOAM6vqRUn2oLVSawfgNuBVVbW6g+Fpgkoyh9bDCTYHfgicTOv/7PO3Ux2V5L3ACbS2yNwG/Cmts1387dSoS/IF4AhgJ+AXwHuAf6ef38omAfsJWltjfwOcXFW9HQhbE8AA382/ALYA7mma3VRVpzTt303rHK1HaB3N8p/r9qnxwWSWJEmSJEmSxg23GUqSJEmSJGncMJklSZIkSZKkccNkliRJkiRJksYNk1mSJEmSJEkaN0xmSZIkSZIkadwwmSVJkqQnSHJGkq07HYckSdK6UlWdjkGSJEljTJK7gZ6q+nWnY5EkSWrnyixJkqRxKslrkixJsjjJ55PMTHJtU3ZNkt2bdhcmOa7tvlXN+xFJvpnksiR3Jrk4LacDTwG+keQbnZmdJElS/yZ1OgBJkiRtuCT7AmcBh1TVr5PsAFwEXFRVFyV5HfAx4CVDdHUgsC/wM+AG4LlV9bEkbwOe58osSZI01rgyS5IkaXw6EliwNtlUVfcCzwH+tan/PHDoevRzS1X9pKoeBRYBM4c/VEmSpOFjMkuSJKn7PULzv/uSPAnYvK1uddv1Gly5L0mSxjiTWZIkSePTtcDxSXYEaLYZfht4eVN/IrCwub4bmNtcvxiYvB79PwBsO1zBSpIkDRf/nzdJkqRxqKqWJXkfcF2SNcBtwGnAZ5O8HfgVcHLT/NPAl5MsBq4CHlyPIeYDVyX5WVU9b/hnIEmStHFSVZ2OQZIkSZIkSVovbjOUJEmSJEnSuGEyS5IkSZIkSeOGySxJkiRJkiSNGyazJEmSJEmSNG6YzJIkSZIkSdK4YTJLkiRJkiRJ44bJLEmSJEmSJI0b/x9Q0GPsfHdHRQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABogAAATYCAYAAAAszkX1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUdf///+ewDZsMohioKOKOG7nlDqamrS6ZZQvikra4VWby0VSUolxSyytLK7XrMlusrMvKJQu3CpcELb1MTZKU0lxmXEeF8/ujH/NtBBQQGIXH/XZ735p5n/fyOsPMwebF+31MhmEYAgAAAAAAAAAAQLnh5uoAAAAAAAAAAAAAULpIEAEAAAAAAAAAAJQzJIgAAAAAAAAAAADKGRJEAAAAAAAAAAAA5QwJIgAAAAAAAAAAgHKGBBEAAAAAAAAAAEA5Q4IIAAAAAAAAAACgnCFBBAAAAAAAAAAAUM6QIAIAAAAAAAAAAChnSBABAAAAKLfi4uIUHh5eLGOZTCZNnjy5WMa6Hi1atEgmk0lbt251dSjF4tKlSxo7dqzCwsLk5uamXr16uTokJScny2QyKTk52dWhlDkmk0nDhw93dRgAAADXFRJEAAAAJchkMhWolMaXgfPmzdN9992nGjVqyGQyKS4uLt+2J0+e1NChQxUcHCw/Pz917txZP/74Y55tP//8czVv3lze3t6qUaOGJk2apEuXLl01npwvQk0mk/7zn//k2aZ9+/YymUxq3Lhxgc6xsM6ePavJkycX+PX/Z8yXlwceeKBEYrxeffnllwVOhtxxxx2qWLGiDMNwqt++fbtMJpNq1qyZq88333wjk8mk+fPnF0e45VJ6eroGDhyo2rVry9vbWyEhIerUqZMmTZrk6tAK5fXXX9eiRYuKfdx33nlH06dPV9++fbV48WI99dRT+baNiYlx+rwHBQWpVatWeuedd5SdnV3ssZWUXbt2afLkyUpPTy9Uvx07dmjgwIGqVauWvL295e/vr6ioKI0dO1a//vprkWI5fPiwJk+erNTU1CL1L4tykrBXK8WV1JYKdy0HAABlj4erAwAAACjL/v3vfzs9f/fdd7VmzZpc9Q0bNizxWF5++WWdOnVKrVu3VmZmZr7tsrOzdeeddyotLU3PPvusKleurNdff10xMTHatm2b6tat62j71VdfqVevXoqJidFrr72mnTt3KjExUUeOHNG8efMKFJe3t7fee+89Pfzww0716enp+u677+Tt7V20Ey6As2fPKiEhQdLfXwAX1MiRI9WqVSunuuL8wu5G8OWXX+pf//pXgb5Y7NChg7766iv99NNPatKkiaN+06ZN8vDw0MGDB/X777+revXqTsdy+t4ozp07Jw+P6+N/sfbt26dWrVrJx8dHgwYNUnh4uDIzM/Xjjz/q5ZdfdrzvbwSvv/66KleufMWkdlF88803qlatmmbNmlWg9tWrV1dSUpIk6ejRo3r33Xc1ePBg/fLLL3rppZeKJaZOnTrp3Llz8vLyKpbxLrdr1y4lJCQoJiamwNesBQsW6PHHH1flypX10EMPqUGDBrp06ZJ++uknvfvuu5o9e7bOnTsnd3f3QsVy+PBhJSQkKDw8XFFRUYU/mTKoU6dOuf59MGTIELVu3VpDhw511Pn7+xfbnIW5lgMAgLLn+vi/FwAAgDLq8qTHDz/8oDVr1uSqLw3r1q1zrB660pdLy5Yt03fffaePPvpIffv2lST169dP9erV06RJk/Tee+852o4ZM0ZNmzbV6tWrHV+MBwQE6MUXX9SoUaPUoEGDq8Z1xx136PPPP9dff/2lypUrO+rfe+893XTTTapbt65OnDhR1NMuER07dnS8Nldz6dIlZWdnl9gXvjeCnCTPxo0bcyWI7rjjDn3zzTfauHGj0yqsjRs3qlKlStecPD1//ry8vLzk5lbymyeUZDKzsGbNmqXTp08rNTU11wqtI0eOuCiq68uRI0cUGBhY4PYWi8Xp2j1s2DDVr19fc+fO1dSpU+Xp6ZmrT3Z2ti5cuFDg94abm9t19T767rvv9Pjjj6t9+/ZasWKFKlSo4HR85syZeuGFF1wU3fXnWq83ERERioiIcKp77LHHFBER4ZJ/NwAAgLKPLeYAAABc7MyZM3rmmWcUFhYms9ms+vXra8aMGbm248q5f8KSJUtUv359eXt7q0WLFlq/fn2B5qlZs6ZMJtNV2y1btkw33XST+vTp46gLDg5Wv3799Nlnn8lut0v6+y/Rd+3apaFDhzqtmnjiiSdkGIaWLVtWoLh69uwps9msjz76yKn+vffeU79+/fL8q/RLly5p6tSpql27tsxms8LDw/V///d/jthybN26Vd27d1flypXl4+OjWrVqadCgQZL+XqEUHBwsSUpISHBs3XMtf0Wdnp4uk8mkGTNmaPbs2Y74du3aJUn63//+p759+yooKEje3t5q2bKlPv/881zj/Pzzz7r11lvl4+Oj6tWrKzExUe+8845MJpPT1lD5xRseHp5rtcXJkyc1evRox/usTp06evnll522x/pn/PPnz3fE36pVK23ZssXRLi4uTv/6178cMeSU/LRu3VpeXl6OVUE5Nm3apE6dOql169ZOx7Kzs/XDDz+oXbt2jnF//fVX3XfffQoKCpKvr6/atGmjL774wmm8nC0A33//fU2YMEHVqlWTr6+vbDabJGn58uVq3LixvL291bhxY3366ad5xvv++++rRYsWqlChggICAtSkSRPNmTMn3/PLcfnPY/LkyTKZTNq3b5/i4uIUGBgoi8WigQMH6uzZs1cdb8OGDY5tIc1ms8LCwvTUU0/p3LlzV+27f/9+Va9ePc/t+6pUqXLFuHPk9T6S/l55N2zYMFWqVEkBAQGKjY3NlcS90mcvR3Z2tmbPnq1GjRrJ29tbN910k4YNG+Y0Vnh4uH7++WetW7fO8T672mq/q11Tc97n3377rX7++ecib/WZ8z48c+aMjh49Ksn5Ot2oUSOZzWatXLlS0t9bKt5+++0KCAiQv7+/unTpoh9++MFpzPzuQZSSkqIePXrIYrHI19dX0dHRuT5PknTo0CENHjxYVatWldlsVq1atfT444/rwoULWrRoke677z5JUufOnQt03jnXxiVLluRKDkl/J0WnTp3qdJ3O730TExPj+NklJyc7VmEOHDjQEcs/txIsyDkX5TNWkN+hhw4d0qBBg3TTTTfJbDarUaNGeuedd5zaXO1689FHHykyMtLpelNc9zy7Wnznzp1TgwYN1KBBA6frxfHjxxUaGqp27dopKyvrqtfyol4LAQDAjYMVRAAAAC5kGIbuueceffvttxo8eLCioqK0atUqPfvsszp06FCurY/WrVunDz74QCNHjpTZbNbrr7+uHj16aPPmzcV2n57t27erefPmuf4CunXr1po/f75++eUXNWnSRNu3b5cktWzZ0qld1apVVb16dcfxq/H19VXPnj21dOlSPf7445KktLQ0/fzzz3rrrbe0Y8eOXH2GDBmixYsXq2/fvnrmmWeUkpKipKQk7d692/Gl/5EjR3TbbbcpODhY48aNU2BgoNLT0/XJJ59I+jvpNW/ePD3++OPq3bu3IyHWtGnTq8Z86tQp/fXXX051QUFBjscLFy7U+fPnNXToUJnNZgUFBennn39W+/btVa1aNY0bN05+fn768MMP1atXL3388cfq3bu3JOmPP/5Q586ddenSJUe7+fPny8fHp0CvZ17Onj2r6OhoHTp0SMOGDVONGjX03XffKT4+XpmZmZo9e7ZT+/fee0+nTp3SsGHDZDKZNG3aNPXp00e//vqrPD09NWzYMB0+fDjP7RLzkvNF7MaNGx11GRkZysjIULt27XTy5EmnZM/OnTtls9kcK4/+/PNPtWvXTmfPntXIkSNVqVIlLV68WPfcc4+WLVvmeO1yTJ06VV5eXhozZozsdru8vLy0evVq3XvvvYqMjFRSUpKOHTumgQMHOm1rJ0lr1qxR//791aVLF7388suSpN27d2vTpk0aNWpUoV73HP369VOtWrWUlJSkH3/8UW+99ZaqVKniGD8/H330kc6ePavHH39clSpV0ubNm/Xaa6/p999/z5VQvVzNmjX19ddf65tvvtGtt95apLjzM3z4cAUGBmry5Mnas2eP5s2bp99++83xhfnVPns5hg0bpkWLFmngwIEaOXKkDhw4oLlz52r79u3atGmTPD09NXv2bI0YMUL+/v4aP368JOmmm27KN7aCXFODg4P173//Wy+88IJOnz7t2DauKKvVfv31V7m7uzutRPrmm2/04Ycfavjw4apcubIjydWxY0cFBARo7Nix8vT01JtvvqmYmBitW7dOt9xyS75zfPPNN7r99tvVokULTZo0SW5ublq4cKFuvfVWbdiwQa1bt5b095ZtrVu3dtxDrkGDBjp06JCWLVums2fPqlOnTho5cqReffVV/d///Z/jfPM777Nnz+qbb75RTExMrs/JtWrYsKGmTJmiiRMnaujQoerYsaMkqV27doU65xwF/YwV5Hfon3/+qTZt2jiSfcHBwfrqq680ePBg2Ww2jR492mnMvK43X3zxhe6//341adJESUlJOnHihAYPHqxq1apd82tXkPh8fHy0ePFitW/fXuPHj9crr7wiSXryySdltVq1aNEiubu7X/FaXhLXQgAAcB0yAAAAUGqefPJJ45//BFu+fLkhyUhMTHRq17dvX8NkMhn79u1z1EkyJBlbt2511P3222+Gt7e30bt370LF4efnZwwYMCDfY4MGDcpV/8UXXxiSjJUrVxqGYRjTp083JBkHDx7M1bZVq1ZGmzZtrhjDt99+a0gyPvroI2PFihWGyWRyjPXss88aERERhmEYRnR0tNGoUSNHv9TUVEOSMWTIEKfxxowZY0gyvvnmG8MwDOPTTz81JBlbtmzJN4ajR48akoxJkyZdMdbLY86rHDhwwDhw4IAhyQgICDCOHDni1LdLly5GkyZNjPPnzzvqsrOzjXbt2hl169Z11I0ePdqQZKSkpDjqjhw5YlgsFsc8OfKLvWbNmk4/36lTpxp+fn7GL7/84tRu3Lhxhru7u+N1z4m/UqVKxvHjxx3tPvvsM0OS8d///tdRd/l7+WqeffZZQ5Lx+++/G4ZhGEuXLjW8vb0Nu91ufPnll4a7u7ths9kMwzCMuXPnGpKMTZs2Ob0mGzZscIx36tQpo1atWkZ4eLiRlZVlGMb/+/lEREQYZ8+edZo/KirKCA0NNU6ePOmoW716tSHJqFmzpqNu1KhRRkBAgHHp0qUCn1uOy38ekyZNMiTl+jz17t3bqFSp0lXHu/wcDMMwkpKSDJPJZPz2229X7PvTTz8ZPj4+hiQjKirKGDVqlLF8+XLjzJkzV407x+Xvo4ULFxqSjBYtWhgXLlxw1E+bNs2QZHz22WeGYRTss7dhwwZDkrFkyRKn+pUrV+aqb9SokREdHX3F881RmGvq5deWK4mOjjYaNGhgHD161Dh69Kixe/duY+TIkYYk4+6773a0k2S4ubkZP//8s1P/Xr16GV5eXsb+/fsddYcPHzYqVKhgdOrUyVGX8x7+9ttvDcP4+xpRt25do3v37kZ2draj3dmzZ41atWoZ3bp1c9TFxsYabm5ueb7uOX0/+ugjp/GvJC0tzZBkjB49OtexY8eOOV6Lo0ePGna73XHs8vdNjujoaKef45YtWwxJxsKFC3PFWtBzLsxnrKC/QwcPHmyEhoYaf/31l1P/Bx54wLBYLI7P5ZWuN02aNDGqV69unDp1ylGXnJyc63pTEJf/vi5ofIZhGPHx8Yabm5uxfv16x89+9uzZTv3yu5Zfy7UQAADcONhiDgAAwIW+/PJLubu7a+TIkU71zzzzjAzD0FdffeVU37ZtW7Vo0cLxvEaNGurZs6dWrVqlrKysYonp3LlzMpvNuepz7ouRs11Nzn/za1uQbbBy3HbbbQoKCtL7778vwzD0/vvvq3///nm2/fLLLyVJTz/9tFP9M888I0mOlSg5f9G/YsUKXbx4scCxFMTEiRO1Zs0apxISEuI4fu+99zq2r5P+3tbnm2++Ub9+/Ryrj/766y8dO3ZM3bt31969e3Xo0CHH+bVp08bpL+SDg4P10EMPFTnejz76SB07dlTFihUdc//111/q2rWrsrKycm2xdP/996tixYqO5zl/3f/rr78WOYac1UAbNmyQ9Pf2ci1atJCXl5fatm3r2FYu51jOFnzS369J69atHWNIf9+kfejQoUpPT3ds4ZdjwIABTiuuMjMzlZqaqgEDBshisTjqu3XrpsjISKe+gYGBOnPmjNasWVPkc73cY4895vS8Y8eOOnbsmGMrqvz88xzOnDmjv/76S+3atZNhGFddodeoUSOlpqbq4YcfVnp6uubMmaNevXrppptu0oIFC4p+MpKGDh3qdL+dxx9/XB4eHo7PZkE+ex999JEsFou6devm9J5s0aKF/P399e233xYptsJeUwvjf//7n4KDgxUcHKyGDRvqtdde05133plr67Ho6Gin91VWVpZWr16tXr16Od1fJjQ0VA8++KA2btyY73shNTVVe/fu1YMPPqhjx445XqczZ86oS5cuWr9+vbKzs5Wdna3ly5fr7rvvzrWqU1KBthe9XE5Med2zLiIiwvFaBAcH57lVZlEV9Jz/qaCfsav9DjUMQx9//LHuvvtuGYbh9N7s3r27rFarfvzxR6cxL7/eHD58WDt37lRsbKzTaxcdHe10D7aiKGx8kydPVqNGjTRgwAA98cQTio6OzvXZyE9JXAsBAMD1hy3mAAAAXOi3335T1apVc93bIWfLn99++82pvm7durnGqFevns6ePaujR486JSmKysfHJ9e9fKS/b76dc/yf/82vbWG2RPP09NR9992n9957T61bt1ZGRoYefPDBPNv+9ttvcnNzU506dZzqQ0JCFBgY6HjNoqOjde+99yohIUGzZs1STEyMevXqpQcffDDPpFZhNGnSRF27ds33eK1atZye79u3T4Zh6Pnnn9fzzz+fZ58jR46oWrVq+u233/Lcbqp+/fpFjnfv3r3asWOHU9Lq8rn/qUaNGk7Pc5JFl99npjDat28vk8mkTZs26YEHHtCmTZvUrVs3SX9/ERkZGemo27Rpk1q1aiUvLy9Jyvc1+efn5J9bLF7++ue8J/L6/NSvX9/pC9UnnnhCH374oW6//XZVq1ZNt912m/r166cePXoU+dyv9HoGBATk2+/gwYOaOHGiPv/881yvvdVqveq89erV07///W9lZWVp165dWrFihaZNm6ahQ4eqVq1aV3wPX8nlr6O/v79CQ0Md98cqyGdv7969slqtue6HlOPy92RBFfaaWhjh4eFasGCBTCaTvL29Vbdu3Tzjv/z9d/ToUZ09ezbPz3DDhg2VnZ2tjIwMNWrUKNfxvXv3Svo7CZEfq9WqCxcuyGazFdtWo5Icr+Hp06dzHfvss8908eJFpaWlacyYMcU2p1Twc/5nErugn7Gr/Q51c3PTyZMnNX/+fM2fPz/PuS9/b+Z3vbn8d1RO3eUJpsI4evRooeLz8vLSO++8o1atWsnb21sLFy4scLKwJK6FAADg+kOCCAAAAE5CQ0OVmZmZqz6nrmrVqo52OfVhYWG52l5+j4irefDBB/XGG29o8uTJatasWa6VHZe72pdcJpNJy5Yt0w8//KD//ve/WrVqlQYNGqSZM2fqhx9+yPOv4ovL5cmxnL92HzNmjLp3755nn7y+TCyqy1eTZWdnq1u3bho7dmye7evVq+f0/J83nP8nwzCKHFOlSpXUoEEDbdy4UadPn9aOHTs0adIkx/F27dpp48aN+v3333Xw4MFrWjF1LfdrqlKlilJTU7Vq1Sp99dVX+uqrr7Rw4ULFxsZq8eLFRRqzKK9nVlaWunXrpuPHj+u5555TgwYN5Ofnp0OHDikuLi7XCoqrzd+kSRM1adJEbdu2VefOnbVkyZKrJoiKuiqxIJ+97OxsValSRUuWLMlzjPySma7k5+dXoKTatbz/Lpfzc54+fbqioqLybOPv76/jx48X25w56tSpIw8PD/3000+5jkVHR0uSPDxyf6WQ37U5Kysr38/CPxX0nP+puK5ZOXM//PDD+SaoLr9PXXH+vK+mKPGtWrVK0t9/uLF3795cCa38lMS1EAAAXH9IEAEAALhQzo3kT5065fQX7//73/8cx/8p5y+r/+mXX36Rr69vsX2hGhUVpQ0bNig7O1tubv9vR+KUlBT5+vo6kgk5X9xt3brVKRl0+PBh/f777xo6dGih5u3QoYNq1Kih5OTkXDcW/6eaNWsqOztbe/fudbq5+p9//qmTJ0/mes3atGmjNm3a6IUXXtB7772nhx56SO+//76GDBlSpG2XiiJnWylPT8+rfsFcs2bNPH/Oe/bsyVVXsWJFnTx50qnuwoULuRJ8tWvX1unTp4u8YiQvRXntOnTooHfeeUerV69WVlaW44b00t8JoqVLlyo5OdnRNkfNmjXzPP/8PieXyzle0NfVy8tLd999t+6++25lZ2friSee0Jtvvqnnn3++WBN5V7Jz50798ssvWrx4sWJjYx3117rdU872Y/98jxT0fZRj79696ty5s+P56dOnlZmZqTvuuMOp3ZU+e7Vr19bXX3+t9u3bX/UL9sK81wp7TS0NwcHB8vX1zfc97ObmlivJnqN27dqSpICAgCt+foODgxUQEJBnMuefCvNa+vn5KSYmRuvWrdOhQ4dUrVq1AvXL6/0k/b2y5p9b7OUXS0HPuSgK8ju0QoUKysrKKvLcOe+xffv25TqWV11hBAcHFyq+HTt2aMqUKRo4cKBSU1M1ZMgQ7dy502mrzSu9J66HayEAAChZ3IMIAADAhe644w5lZWVp7ty5TvWzZs2SyWTS7bff7lT//fffO21Pk5GRoc8++0y33XZbgf4yuyD69u2rP//8U5988omj7q+//tJHH32ku+++27FFVKNGjdSgQQPNnz/faaXBvHnzZDKZ1Ldv30LNazKZ9Oqrr2rSpEl65JFH8m2X8yX07NmznepfeeUVSdKdd94p6e+thS7/6/GcpFbOtni+vr6SlOeXmcWpSpUqiomJ0Ztvvpnnl+5Hjx51PL7jjjv0ww8/aPPmzU7H81ppUbt27Vz3D7r85yFJ/fr10/fff+/4S/J/OnnypC5dulToc/Lz83P0L6gOHTooKytLM2bMUN26dZ2Smu3atdPp06f1+uuvy83NzSl5dMcdd2jz5s36/vvvHXVnzpzR/PnzFR4eftXVZqGhoYqKitLixYudtmZbs2ZNrvsXHTt2zOm5m5ub4y/y89pOsaTkfJ7/+R42DENz5swpUP8NGzbkef+fnPsE/XO7s4K+j/557J9jz5s3T5cuXXJcrwry2evXr5+ysrI0derUXONfunTJ6X3l5+dX4PdZYa+ppcHd3V233XabPvvsM8c2fNLfSe333ntPHTp0yHerwRYtWqh27dqaMWNGnlu95Vw73Nzc1KtXL/33v//V1q1bc7XL+XkU9nM7ceJEZWVl6eGHH85z/rxW6NSuXVs//PCDLly44KhbsWKFMjIynNrlF0tBz7korvY71N3dXffee68+/vjjPJNtBZm7atWqaty4sd59912n+NetW6edO3cWOXZJhYrv4sWLiouLU9WqVTVnzhwtWrRIf/75p5566imnPvn9HK6XayEAAChZrCACAABwobvvvludO3fW+PHjlZ6ermbNmmn16tX67LPPNHr0aMdfUudo3LixunfvrpEjR8psNuv111+XJCUkJFx1rv/+979KS0uT9PcXRzt27FBiYqIk6Z577nF88dO3b1+1adNGAwcO1K5du1S5cmW9/vrrysrKyjXP9OnTdc899+i2227TAw88oJ9++klz587VkCFDnFb3FFTPnj3Vs2fPK7Zp1qyZBgwYoPnz5+vkyZOKjo7W5s2btXjxYvXq1cuxsmHx4sV6/fXX1bt3b9WuXVunTp3SggULFBAQ4Egy+fj4KDIyUh988IHq1aunoKAgNW7cuFjv45HjX//6lzp06KAmTZro0UcfVUREhP788099//33+v333x0/m7Fjx+rf//63evTooVGjRsnPz0/z589XzZo1tWPHDqcxhwwZoscee0z33nuvunXrprS0NK1atUqVK1d2avfss8/q888/11133aW4uDi1aNFCZ86c0c6dO7Vs2TKlp6fn6nM1OTd6HzlypLp37y53d3c98MADV+yTsyro+++/V1xcnNOxevXqqXLlyvr+++/VpEkTBQYGOo6NGzdOS5cu1e23366RI0cqKChIixcv1oEDB/Txxx87rXTLT1JSku6880516NBBgwYN0vHjx/Xaa6+pUaNGTl/iDhkyRMePH9ett96q6tWr67ffftNrr72mqKioIr2ni6pBgwaqXbu2xowZo0OHDikgIEAff/xxge8D9fLLL2vbtm3q06eP47P9448/6t1331VQUJBGjx7taFvQ91GOCxcuqEuXLurXr5/27Nmj119/XR06dNA999wjqWCfvejoaA0bNkxJSUlKTU3VbbfdJk9PT+3du1cfffSR5syZ40gyt2jRQvPmzVNiYqLq1KmjKlWq6NZbb80ztsJeU0tLYmKi1qxZow4dOuiJJ56Qh4eH3nzzTdntdk2bNi3ffm5ubnrrrbd0++23q1GjRho4cKCqVaumQ4cO6dtvv1VAQID++9//SpJefPFFrV69WtHR0Ro6dKgaNmyozMxMffTRR9q4caMCAwMVFRUld3d3vfzyy7JarTKbzbr11lvzvRdUx44dNXfuXI0YMUJ169bVQw89pAYNGujChQv65ZdftGTJEnl5eTnd/27IkCFatmyZevTooX79+mn//v36z3/+k+u1r127tgIDA/XGG2+oQoUK8vPz0y233KJatWoV+JwLqyC/Q1966SV9++23uuWWW/Too48qMjJSx48f148//qivv/66QNv5vfjii+rZs6fat2+vgQMH6sSJE5o7d64aN26cZ9KrMAoaX2JiolJTU7V27VpVqFBBTZs21cSJEzVhwgT17dvX8VnM71p+vVwLAQBACTMAAABQap588knj8n+CnTp1ynjqqaeMqlWrGp6enkbdunWN6dOnG9nZ2U7tJBlPPvmk8Z///MeoW7euYTabjZtvvtn49ttvCzT3gAEDDEl5loULFzq1PX78uDF48GCjUqVKhq+vrxEdHW1s2bIlz3E//fRTIyoqyjCbzUb16tWNCRMmGBcuXLhqPN9++60hyfjoo4+u2C46Otpo1KiRU93FixeNhIQEo1atWoanp6cRFhZmxMfHG+fPn3e0+fHHH43+/fsbNWrUMMxms1GlShXjrrvuMrZu3eo01nfffWe0aNHC8PLyMiQZkyZNKnLMBw4cMCQZ06dPz/P4/v37jdjYWCMkJMTw9PQ0qlWrZtx1113GsmXLnNrt2LHDiI6ONry9vY1q1aoZU6dONd5++21DknHgwAFHu6ysLOO5554zKleubPj6+hrdu3c39u3bZ9SsWdMYMGCA05inTp0y4uPjjTp16hheXl5G5cqVjXbt2hkzZsxw/LyuFP/lr82lS5eMESNGGMHBwYbJZMr1vs5P1apVDUnG/Pnzcx275557DEnG448/nudr17dvXyMwMNDw9vY2WrdubaxYscKpzdV+Ph9//LHRsGFDw2w2G5GRkcYnn3xiDBgwwKhZs6ajzbJly4zbbrvNqFKliuHl5WXUqFHDGDZsmJGZmXnVc7v8NZo0aZIhyTh69KhTu4ULF+b6WeZl165dRteuXQ1/f3+jcuXKxqOPPmqkpaXl+Zm93KZNm4wnn3zSaNy4sWGxWAxPT0+jRo0aRlxcnLF//36ntgV9H+XEvW7dOmPo0KFGxYoVDX9/f+Ohhx4yjh075mhX0M+eYRjG/PnzjRYtWhg+Pj5GhQoVjCZNmhhjx441Dh8+7Gjzxx9/GHfeeadRoUIFQ5IRHR19xXMv6DU1r2tLfgraNuc6nZcff/zR6N69u+Hv72/4+voanTt3Nr777junNjnv4cuv69u3bzf69OljVKpUyTCbzUbNmjWNfv36GWvXrnVq99tvvxmxsbFGcHCwYTabjYiICOPJJ5807Ha7o82CBQuMiIgIw93dPc+58rJ9+3YjNjbWqFGjhuHl5WX4+fkZTZs2NZ555hlj3759udrPnDnTqFatmmE2m4327dsbW7duNaKjo3P97D777DMjMjLS8PDwyPW+Lsg5F+YzVpjfoX/++afx5JNPGmFhYYanp6cREhJidOnSxem6dbXrzfvvv280aNDAMJvNRuPGjY3PP//cuPfee40GDRpc4ZXOzc/PL9f1/Grxbdu2zfDw8DBGjBjh1O/SpUtGq1atjKpVqxonTpxw1OV1Lb+WayEAALhxmAzjGu40CwAAgFJjMpn05JNP5to6CeXDokWLNHDgQB04cEDh4eGuDgdACVi7dq26du2qDRs2ON2HC2VDVFSUgoODr/leYgAAAMWFexABAAAAAHAdyLlHWWG3fMT15eLFi7nu7ZacnKy0tDTFxMS4JigAAIA8cA8iAAAAAABc6MyZM1qyZInmzJmj6tWrq169eq4OCdfg0KFD6tq1qx5++GFVrVpV//vf//TGG28oJCREjz32mKvDAwAAcCBBBAAAAACACx09elQjRoxQkyZNtHDhQrm5sdnHjaxixYpq0aKF3nrrLR09elR+fn6688479dJLL6lSpUquDg8AAMCBexABAAAAAAAAAACUM/xZEgAAAAAAAAAAQDlDgggAAAAAAAAAAKCc4R5EN7Ds7GwdPnxYFSpUkMlkcnU4AAAAAAAAAADAhQzD0KlTp1S1atWr3tuSBNEN7PDhwwoLC3N1GAAAAAAAAAAA4DqSkZGh6tWrX7ENCaISkJycrM6dO+vEiRMKDAwssXkqVKggSWo8bJbcvXxKbB4AAAAAAAAAAFxtfWJ/V4dw3bPZbAoLC3PkD66EBFExiImJUVRUlGbPnl2q8+ZsK+fu5SN3MwkiAAAAAAAAAEDZFRAQ4OoQbhgFuS3NlTegAwAAAAAAAAAAQJlDgugaxcXFad26dZozZ45MJpNMJpPS09MlSdu2bVPLli3l6+urdu3aac+ePU59P/vsMzVv3lze3t6KiIhQQkKCLl26lO9cdrtdNpvNqQAAAAAAAAAAABQWCaJrNGfOHLVt21aPPvqoMjMzlZmZqbCwMEnS+PHjNXPmTG3dulUeHh4aNGiQo9+GDRsUGxurUaNGadeuXXrzzTe1aNEivfDCC/nOlZSUJIvF4ig58wAAAAAAAAAAABQGCaJrZLFY5OXlJV9fX4WEhCgkJETu7u6SpBdeeEHR0dGKjIzUuHHj9N133+n8+fOSpISEBI0bN04DBgxQRESEunXrpqlTp+rNN9/Md674+HhZrVZHycjIKJVzBAAAAAAAAAAAZYuHqwMoy5o2bep4HBoaKkk6cuSIatSoobS0NG3atMlpxVBWVpbOnz+vs2fPytfXN9d4ZrNZZrO55AMHAAAAAAAAAABlGgmiEuTp6el4bDKZJEnZ2dmSpNOnTyshIUF9+vTJ1c/b27t0AgQAAAAAAAAAAOUSCaJi4OXlpaysrEL1ad68ufbs2aM6deqUUFQAAAAAAAAAAAB5I0FUDMLDw5WSkqL09HT5+/s7VgldycSJE3XXXXepRo0a6tu3r9zc3JSWlqaffvpJiYmJhZp/fWJ/BQQEFDV8AAAAAAAAAABQzri5OoCyYMyYMXJ3d1dkZKSCg4N18ODBq/bp3r27VqxYodWrV6tVq1Zq06aNZs2apZo1a5ZCxAAAAAAAAAAAoDwzGYZhuDoI/G3Tpk167LHH9L///U933nmnli9ffsX2NptNFotFzUa8IXezT+kECQAAAADXkW3TY10dAgAAAHDdyMkbWK3Wq+48xhZz15Gnn35aUVFR+uqrr+Tv7+/qcAAAAAAAAAAAQBnFFnPXkf379+vWW29V9erVFRgY6OpwAAAAAAAAAABAGUWCqBTZ7XaNHDlSVapUkbe3tzp06KAtW7YoPT1dJpNJx44d06BBg2QymbRo0SJXhwsAAAAAAAAAAMooEkSlaOzYsfr444+1ePFi/fjjj6pTp466d++uChUqKDMzUwEBAZo9e7YyMzN1//335+pvt9tls9mcCgAAAAAAAAAAQGGRIColZ86c0bx58zR9+nTdfvvtioyM1IIFC+Tj46N33nlHISEhMplMslgsCgkJkY+PT64xkpKSZLFYHCUsLMwFZwIAAAAAAAAAAG50JIhKyf79+3Xx4kW1b9/eUefp6anWrVtr9+7dBRojPj5eVqvVUTIyMkoqXAAAAAAAAAAAUIZ5uDoAFJzZbJbZbHZ1GAAAAAAAAAAA4AbHCqJSUrt2bXl5eWnTpk2OuosXL2rLli2KjIx0YWQAAAAAAAAAAKC8YQVRKfHz89Pjjz+uZ599VkFBQapRo4amTZums2fPavDgwa4ODwAAAAAAAAAAlCMkiErRSy+9pOzsbD3yyCM6deqUWrZsqVWrVqlixYrXNO76xP4KCAgopigBAAAAAAAAAEBZZzIMw3B1ECgam80mi8Uiq9VKgggAAAAAAAAAgHKuMHkDVhBdRxYtWqTRo0fr5MmTherXacJSuZt9SiYoAAAAoIzZNj3W1SEAAAAAgMu5uToAAAAAAAAAAAAAlC4SRAAAAAAAAAAAAOUMCaIiWrlypTp06KDAwEBVqlRJd911l/bv3y9JSk9Pl8lk0ieffKLOnTvL19dXzZo10/fff+80xqJFi1SjRg35+vqqd+/eOnbsmCtOBQAAAAAAAAAAlDMkiIrozJkzevrpp7V161atXbtWbm5u6t27t7Kzsx1txo8frzFjxig1NVX16tVT//79denSJUlSSkqKBg8erOHDhys1NVWdO3dWYmLiFee02+2y2WxOBQAAAAAAAAAAoLBMhmEYrg6iLPjrr78UHBysnTt3yt/fX7Vq1dJbb72lwYMHS5J27dqlRo0aaffu3WrQoIEefPBBWa1WffHFF44xHnjgAa1cuVInT57Mc47JkycrISEhV32zEW/I3exTIucFAAAAlDXbpse6OgQAAAAAKBE2m00Wi0VWq1UBAQFXbMsKoiLau3ev+vfvr4iICAUEBCg8PFySdPDgQUebpk2bOh6HhoZKko4cOSJJ2r17t2655RanMdu2bXvFOePj42W1Wh0lIyOjOE4FAAAAAAAAAACUMx6uDuBGdffdd6tmzZpasGCBqlatquzsbDVu3FgXLlxwtPH09HQ8NplMkuS0BV1hmc1mmc3mogcNAAAAAAAAAAAgEkRFcuzYMe3Zs0cLFixQx44dJUkbN24s1BgNGzZUSkqKU90PP/xQbDECAAAAAAAAAADkhwRREVSsWFGVKlXS/PnzFRoaqoMHD2rcuHGFGmPkyJFq3769ZsyYoZ49e2rVqlVauXJlkeJZn9j/qnsJAgAAAAAAAAAA5OAeREXg5uam999/X9u2bVPjxo311FNPafr06YUao02bNlqwYIHmzJmjZs2aafXq1ZowYUIJRQwAAAAAAAAAAPD/mAzDMFwdBIrGZrPJYrHIarWygggAAAAAAAAAgHKuMHkDtpgrAzpNWCp3s4+rwwAAAEW0bXqsq0MAAAAAAADlDFvMAQAAAAAAAAAAlDMkiFxs5cqV6tChgwIDA1WpUiXddddd2r9/v6vDAgAAAAAAAAAAZRgJIhc7c+aMnn76aW3dulVr166Vm5ubevfurezs7Fxt7Xa7bDabUwEAAAAAAAAAACgs7kHkYvfee6/T83feeUfBwcHatWuXGjdu7HQsKSlJCQkJpRkeAAAAAAAAAAAog1hB5GJ79+5V//79FRERoYCAAIWHh0uSDh48mKttfHy8rFaro2RkZJRytAAAAAAAAAAAoCxgBZGL3X333apZs6YWLFigqlWrKjs7W40bN9aFCxdytTWbzTKbzS6IEgAAAAAAAAAAlCUkiFzo2LFj2rNnjxYsWKCOHTtKkjZu3OjiqAAAAAAAAAAAQFlHgsiFKlasqEqVKmn+/PkKDQ3VwYMHNW7cOFeHBQAAAAAAAAAAyjgSRC7k5uam999/XyNHjlTjxo1Vv359vfrqq4qJiSnUOOsT+ysgIKBkggQAAAAAAAAAAGUOCSIX69q1q3bt2uVUZxiGi6IBAAAAAAAAAADlAQmiMqDThKVyN/u4OgwAAIrdtumxrg4BAAAAAACgTHJzdQDlRUxMjEaPHu3qMAAAAAAAAAAAAEgQAQAAAAAAAAAAlDckiEpBXFyc1q1bpzlz5shkMslkMik9PV3r1q1T69atZTabFRoaqnHjxunSpUuuDhcAAAAAAAAAAJRxJIhKwZw5c9S2bVs9+uijyszMVGZmpjw9PXXHHXeoVatWSktL07x58/T2228rMTEx33HsdrtsNptTAQAAAAAAAAAAKCwPVwdQHlgsFnl5ecnX11chISGSpPHjxyssLExz586VyWRSgwYNdPjwYT333HOaOHGi3Nxy5+6SkpKUkJBQ2uEDAAAAAAAAAIAyhhVELrJ79261bdtWJpPJUde+fXudPn1av//+e5594uPjZbVaHSUjI6O0wgUAAAAAAAAAAGUIK4huIGazWWaz2dVhAAAAAAAAAACAGxwriEqJl5eXsrKyHM8bNmyo77//XoZhOOo2bdqkChUqqHr16q4IEQAAAAAAAAAAlBOsICol4eHhSklJUXp6uvz9/fXEE09o9uzZGjFihIYPH649e/Zo0qRJevrpp/O8/9CVrE/sr4CAgBKKHAAAAAAAAAAAlDWsIColY8aMkbu7uyIjIxUcHKyLFy/qyy+/1ObNm9WsWTM99thjGjx4sCZMmODqUAEAAAAAAAAAQBlnMv65xxlKVExMjKKiojR79uxiGc9ms8lischqtbKCCAAAAAAAAACAcq4weQO2mCtFn3zyiTw9PYt93E4Tlsrd7FPs4wIAim7b9FhXhwAAAAAAAADkiwRRKQoKCnJ1CAAAAAAAAAAAANyDqDTFxMRo9OjRkqTw8HC9+OKLGjRokCpUqKAaNWpo/vz5rg0QAAAAAAAAAACUCySIXGjmzJlq2bKltm/frieeeEKPP/649uzZk297u90um83mVAAAAAAAAAAAAAqLBJEL3XHHHXriiSdUp04dPffcc6pcubK+/fbbfNsnJSXJYrE4SlhYWClGCwAAAAAAAAAAygoSRC7UtGlTx2OTyaSQkBAdOXIk3/bx8fGyWq2OkpGRURphAgAAAAAAAACAMsbD1QGUZ56enk7PTSaTsrOz821vNptlNptLOiwAAAAAAAAAAFDGsYIIAAAAAAAAAACgnCFBBAAAAAAAAAAAUM6wxVwZsD6xvwICAlwdBgAAAAAAAAAAuEGYDMMwXB0EisZms8lischqtZIgAgAAAAAAAACgnCtM3oAVRGVApwlL5W72cXUYAFAitk2PdXUIAAAAAAAAQJnDPYgAAAAAAAAAAADKGRJEAAAAAAAAAAAA5QwJokJasWKFAgMDlZWVJUlKTU2VyWTSuHHjHG2GDBmihx9+WMeOHVP//v1VrVo1+fr6qkmTJlq6dKnTeMuWLVOTJk3k4+OjSpUqqWvXrjpz5kypnhMAAAAAAAAAAChfSBAVUseOHXXq1Clt375dkrRu3TpVrlxZycnJjjbr1q1TTEyMzp8/rxYtWuiLL77QTz/9pKFDh+qRRx7R5s2bJUmZmZnq37+/Bg0apN27dys5OVl9+vSRYRh5zm2322Wz2ZwKAAAAAAAAAABAYZEgKiSLxaKoqChHQig5OVlPPfWUtm/frtOnT+vQoUPat2+foqOjVa1aNY0ZM0ZRUVGKiIjQiBEj1KNHD3344YeS/k4QXbp0SX369FF4eLiaNGmiJ554Qv7+/nnOnZSUJIvF4ihhYWGlddoAAAAAAAAAAKAMIUFUBNHR0UpOTpZhGNqwYYP69Omjhg0bauPGjVq3bp2qVq2qunXrKisrS1OnTlWTJk0UFBQkf39/rVq1SgcPHpQkNWvWTF26dFGTJk103333acGCBTpx4kS+88bHx8tqtTpKRkZGaZ0yAAAAAAAAAAAoQ0gQFUFMTIw2btyotLQ0eXp6qkGDBoqJiVFycrLWrVun6OhoSdL06dM1Z84cPffcc/r222+Vmpqq7t2768KFC5Ikd3d3rVmzRl999ZUiIyP12muvqX79+jpw4ECe85rNZgUEBDgVAAAAAAAAAACAwiJBVAQ59yGaNWuWIxmUkyBKTk5WTEyMJGnTpk3q2bOnHn74YTVr1kwRERH65ZdfnMYymUxq3769EhIStH37dnl5eenTTz8t7VMCAAAAAAAAAADliIerA7gRVaxYUU2bNtWSJUs0d+5cSVKnTp3Ur18/Xbx40ZE0qlu3rpYtW6bvvvtOFStW1CuvvKI///xTkZGRkqSUlBStXbtWt912m6pUqaKUlBQdPXpUDRs2LFQ86xP7s5oIAAAAAAAAAAAUGAmiIoqOjlZqaqpjtVBQUJAiIyP1559/qn79+pKkCRMm6Ndff1X37t3l6+uroUOHqlevXrJarZKkgIAArV+/XrNnz5bNZlPNmjU1c+ZM3X777a46LQAAAAAAAAAAUA6YDMMwXB1EWRQTE6OoqCjNnj27xOaw2WyyWCyyWq2sIAIAAAAAAAAAoJwrTN6AFURlQKcJS+Vu9nF1GADKkG3TY10dAgAAAAAAAIAS5ObqAAAAAAAAAAAAAFC6SBCVoOzsbI0dO1ZBQUEKCQnR5MmTHcdOnjypIUOGKDg4WAEBAbr11luVlpbmumABAAAAAAAAAEC5QYKoBC1evFh+fn5KSUnRtGnTNGXKFK1Zs0aSdN999+nIkSP66quvtG3bNjVv3lxdunTR8ePH8x3PbrfLZrM5FQAAAAAAAAAAgMLiHkQlqGnTppo0aZIkqW7dupo7d67Wrl0rHx8fbd68WUeOHJHZbJYkzZgxQ8uXL9eyZcs0dOjQPMdLSkpSQkJCqcUPAAAAAAAAAADKJlYQlaCmTZs6PQ8NDdWRI0eUlpam06dPq1KlSvL393eUAwcOaP/+/fmOFx8fL6vV6igZGRklfQoAAAAAAAAAAKAMYgVRCfL09HR6bjKZlJ2drdOnTys0NFTJycm5+gQGBuY7ntlsdqw4AgAAAAAAAAAAKCoSRC7QvHlz/fHHH/Lw8FB4eLirwwEAAAAAAAAAAOUMW8y5QNeuXdW2bVv16tVLq1evVnp6ur777juNHz9eW7dudXV4AAAAAAAAAACgjGMFkQuYTCZ9+eWXGj9+vAYOHKijR48qJCREnTp10k033VTo8dYn9ldAQEAJRAoAAAAAAAAAAMoik2EYhquDQNHYbDZZLBZZrVYSRAAAAAAAAAAAlHOFyRuwgug6MXnyZC1fvlypqamF7ttpwlK5m32KPygA12Tb9FhXhwAAAAAAAAAAeeIeREX0/fffy93dXXfeeaerQwEAAAAAAAAAACgUEkRF9Pbbb2vEiBFav369Dh8+7OpwAAAAAAAAAAAACowEURGcPn1aH3zwgR5//HHdeeedWrRokeNYcnKyTCaT1q5dq5YtW8rX11ft2rXTnj17nMZ46aWXdNNNN6lChQoaPHiwzp8/X8pnAQAAAAAAAAAAyisSREXw4YcfqkGDBqpfv74efvhhvfPOOzIMw6nN+PHjNXPmTG3dulUeHh4aNGiQU//JkyfrxRdf1NatWxUaGqrXX3/9qvPa7XbZbDanAgAAAAAAAAAAUFgkiIrg7bff1sMPPyxJ6tGjh6xWq9atW+fU5oUXXlB0dLQiIyM1btw4fffdd45VQrNnz9bgwYM1ePBg1a9fX4mJiYqMjLzqvElJSbJYLI4SFhZW/CcHAAAAAAAAAADKPBJEhbRnzx5t3rxZ/fv3lyR5eHjo/vvv19tvv+3UrmnTpo7HoaGhkqQjR45Iknbv3q1bbrnFqX3btm2vOnd8fLysVqujZGRkXNO5AAAAAAAAAACA8snD1QHcaN5++21dunRJVatWddQZhiGz2ay5c+c66jw9PR2PTSaTJCk7O/ua5jabzTKbzdc0BgAAAAAAAAAAACuICuHSpUt69913NXPmTKWmpjpKWlqaqlatqqVLlxZonIYNGyolJcWp7ocffiiJkAEAAAAAAAAAAHJhBVEhrFixQidOnNDgwYNlsVicjt177716++23NX369KuOM2rUKMXFxally5Zq3769lixZop9//lkRERElFToAAAAAAAAAAIADCaJCePvtt9W1a9dcySHp7wTRtGnTtGPHjquOc//992v//v0aO3aszp8/r3vvvVePP/64Vq1aVaS41if2V0BAQJH6AgAAAAAAAACA8sdkGIbh6iBQNDabTRaLRVarlQQRAAAAAAAAAADlXGHyBqwgKgM6TVgqd7OPq8MAcJlt02NdHQIAAAAAAAAA5MnN1QEAAAAAAAAAAACgdJEgcoELFy64OgQAAAAAAAAAAFCOkSDKw4oVKxQYGKisrCxJUmpqqkwmk8aNG+doM2TIED388MOSpI0bN6pjx47y8fFRWFiYRo4cqTNnzjjahoeHa+rUqYqNjVVAQICGDh1aoH6Xs9vtstlsTgUAAAAAAAAAAKCwSBDloWPHjjp16pS2b98uSVq3bp0qV66s5ORkR5t169YpJiZG+/fvV48ePXTvvfdqx44d+uCDD7Rx40YNHz7cacwZM2aoWbNm2r59u55//vkC9/unpKQkWSwWRwkLCyuR8wcAAAAAAAAAAGWbyTAMw9VBXI9atGih/v37a8yYMerdu7datWqlhIQEHTt2TFarVdWrV9cvv/yil19+We7u7nrzzTcdfTdu3Kjo6GidOXNG3t7eCg8P180336xPP/3U0WbIkCFX7Xc5u90uu93ueG6z2RQWFqZmI96Qu9mnhF4JAEW1bXqsq0MAAAAAAAAAUI7YbDZZLBZZrVYFBARcsS0riPIRHR2t5ORkGYahDRs2qE+fPmrYsKE2btyodevWqWrVqqpbt67S0tK0aNEi+fv7O0r37t2VnZ2tAwcOOMZr2bKl0/gF7fdPZrNZAQEBTgUAAAAAAAAAAKCwPFwdwPUqJiZG77zzjtLS0uTp6akGDRooJiZGycnJOnHihKKjoyVJp0+f1rBhwzRy5MhcY9SoUcPx2M/Pz+lYQfsBAAAAAAAAAAAUNxJE+ci5D9GsWbMcyaCYmBi99NJLOnHihJ555hlJUvPmzbVr1y7VqVOnUOMXtR8AAAAAAAAAAMC1IkGUj4oVK6pp06ZasmSJ5s6dK0nq1KmT+vXrp4sXLzqSRs8995zatGmj4cOHa8iQIfLz89OuXbu0Zs0aR7+8FLVfXtYn9me7OQAAAAAAAAAAUGDcg+gKoqOjlZWVpZiYGElSUFCQIiMjFRISovr160uSmjZtqnXr1umXX35Rx44ddfPNN2vixImqWrXqFccuaj8AAAAAAAAAAIBrZTIMw3B1EDeq5ORkde7cWSdOnFBgYGCpz2+z2WSxWNRsxBtyN/uU+vxAebRteqyrQwAAAAAAAACAPOXkDaxW61V3HmMFUSHExMRo9OjRxT5ueHi4Zs+eXezjAgAAAAAAAAAA5IUEEQAAAAAAAAAAQDlDgqiA4uLitG7dOs2ZM0cmk0kmk0np6emSpG3btqlly5by9fVVu3bttGfPHke//fv3q2fPnrrpppvk7++vVq1a6euvv3Ycj4mJ0W+//aannnrKMS4AAAAAAAAAAEBJIkFUQHPmzFHbtm316KOPKjMzU5mZmQoLC5MkjR8/XjNnztTWrVvl4eGhQYMGOfqdPn1ad9xxh9auXavt27erR48euvvuu3Xw4EFJ0ieffKLq1atrypQpjnHzY7fbZbPZnAoAAAAAAAAAAEBhkSAqIIvFIi8vL/n6+iokJEQhISFyd3eXJL3wwguKjo5WZGSkxo0bp++++07nz5+XJDVr1kzDhg1T48aNVbduXU2dOlW1a9fW559/LkkKCgqSu7u7KlSo4Bg3P0lJSbJYLI6Sk6ACAAAAAAAAAAAoDBJExaBp06aOx6GhoZKkI0eOSPp7BdGYMWPUsGFDBQYGyt/fX7t373asICqM+Ph4Wa1WR8nIyCieEwAAAAAAAAAAAOWKh6sDKAs8PT0dj3PuIZSdnS1JGjNmjNasWaMZM2aoTp068vHxUd++fXXhwoVCz2M2m2U2m4snaAAAAAAAAAAAUG6RICoELy8vZWVlFarPpk2bFBcXp969e0v6e0VRenr6NY8LAAAAAAAAAABQVGwxVwjh4eFKSUlRenq6/vrrL8cqoSupW7euPvnkE6WmpiotLU0PPvhgrn7h4eFav369Dh06pL/++qukwgcAAAAAAAAAAJDECqJCGTNmjAYMGKDIyEidO3dOCxcuvGqfV155RYMGDVK7du1UuXJlPffcc7LZbE5tpkyZomHDhql27dqy2+0yDKNQca1P7K+AgIBC9QEAAAAAAAAAAOWXyShsNgLXDZvNJovFIqvVSoIIAAAAAAAAAIByrjB5A1YQFbOYmBhFRUVp9uzZeR43mUz69NNP1atXr2Kbs9OEpXI3+xTbeADyt216rKtDAAAAAAAAAIBrRoKolGVmZqpixYquDgMAAAAAAAAAAJRjJIhKWUhIiKtDAAAAAAAAAAAA5ZybqwMoi7KzszV27FgFBQUpJCREkydPdhwzmUxavny5JOnChQsaPny4QkND5e3trZo1ayopKck1QQMAAAAAAAAAgHKDFUQlYPHixXr66aeVkpKi77//XnFxcWrfvr26devm1O7VV1/V559/rg8//FA1atRQRkaGMjIy8h3XbrfLbrc7nttsthI7BwAAAAAAAAAAUHaRICoBTZs21aRJkyRJdevW1dy5c7V27dpcCaKDBw+qbt266tChg0wmk2rWrHnFcZOSkpSQkFBicQMAAAAAAAAAgPKBLeZKQNOmTZ2eh4aG6siRI7naxcXFKTU1VfXr19fIkSO1evXqK44bHx8vq9XqKFdabQQAAAAAAAAAAJAfEkQlwNPT0+m5yWRSdnZ2rnbNmzfXgQMHNHXqVJ07d079+vVT37598x3XbDYrICDAqQAAAAAAAAAAABQWW8y5WEBAgO6//37df//96tu3r3r06KHjx48rKCjI1aEBAAAAAAAAAIAyigSRC73yyisKDQ3VzTffLDc3N3300UcKCQlRYGBgocZZn9if1UQAAAAAAAAAAKDASBC5UIUKFTRt2jTt3btX7u7uatWqlb788ku5ubHzHwAAAAAAAAAAKDkmwzAMVwdRFsXExCgqKkqzZ88usTlsNpssFouajXhD7mafEpsHKMu2TY91dQgAAAAAAAAAUCxy8gZWq/WqO4+xVAUAAAAAAAAAAKCcIUEEAAAAAAAAAABQzpAgKkGXLl3S8OHDZbFYVLlyZT3//PMyDENTpkxR48aNc7WPiorS888/74JIAQAAAAAAAABAeUKCqAQtXrxYHh4e2rx5s+bMmaNXXnlFb731lgYNGqTdu3dry5Ytjrbbt2/Xjh07NHDgwHzHs9vtstlsTgUAAAAAAAAAAKCwSBCVoLCwMM2aNUv169fXQw89pBEjRmjWrFmqXr26unfvroULFzraLly4UNHR0YqIiMh3vKSkJFksFkcJCwsrjdMAAAAAAAAAAABlDAmiEtSmTRuZTCbH87Zt22rv3r3KysrSo48+qqVLl+r8+fO6cOGC3nvvPQ0aNOiK48XHx8tqtTpKRkZGSZ8CAAAAAAAAAAAogzxcHUB5dffdd8tsNuvTTz+Vl5eXLl68qL59+16xj9lsltlsLqUIAQAAAAAAAABAWUWCqASlpKQ4Pf/hhx9Ut25dubu7S5IGDBighQsXysvLSw888IB8fHxcESYAAAAAAAAAAChnSBCVoIMHD+rpp5/WsGHD9OOPP+q1117TzJkzHceHDBmihg0bSpI2bdrkqjABAAAAAAAAAEA5Q4KoBMXGxurcuXNq3bq13N3dNWrUKA0dOtRxvG7dumrXrp2OHz+uW265pcjzrE/sr4CAgOIIGQAAAAAAAAAAlAMkiEpIcnKy4/G8efPybGMYhg4fPqwnnniilKICAAAAAAAAAAAgQVQkMTExioqK0uzZs4s8xtGjR/X+++/rjz/+0MCBA7Vo0SKNHj1aJ0+eLPRYnSYslbuZ+xcBObZNj3V1CAAAAAAAAABwXSNB5CJVqlRR5cqVNX/+fFWsWNHV4QAAAAAAAAAAgHKEBJGLGIbh6hAAAAAAAAAAAEA55ebqAG5U2dnZGjt2rIKCghQSEqLJkyc7jr3yyitq0qSJ/Pz8FBYWpieeeEKnT5926r9o0SLVqFFDvr6+6t27t44dO1bKZwAAAAAAAAAAAMorEkRFtHjxYvn5+SklJUXTpk3TlClTtGbNGkmSm5ubXn31Vf38889avHixvvnmG40dO9bRNyUlRYMHD9bw4cOVmpqqzp07KzEx8apz2u122Ww2pwIAAAAAAAAAAFBYJoO9zgotJiZGWVlZ2rBhg6OudevWuvXWW/XSSy/lar9s2TI99thj+uuvvyRJDz74oKxWq7744gtHmwceeEArV67UyZMn85138uTJSkhIyFXfbMQbcjf7XMMZAWXLtumxrg4BAAAAAAAAAEqdzWaTxWKR1WpVQEDAFduygqiImjZt6vQ8NDRUR44ckSR9/fXX6tKli6pVq6YKFSrokUce0bFjx3T27FlJ0u7du3XLLbc49W/btu1V54yPj5fVanWUjIyMYjobAAAAAAAAAABQnpAgKiJPT0+n5yaTSdnZ2UpPT9ddd92lpk2b6uOPP9a2bdv0r3/9S5J04cKFa5rTbDYrICDAqQAAAAAAAAAAABSWh6sDKGu2bdum7OxszZw5U25uf+ffPvzwQ6c2DRs2VEpKilPdDz/8UGoxAgAAAAAAAACA8o0EUTGrU6eOLl68qNdee0133323Nm3apDfeeMOpzciRI9W+fXvNmDFDPXv21KpVq7Ry5coiz7k+sT+riQAAAAAAAAAAQIGxxVwxa9asmV555RW9/PLLaty4sZYsWaKkpCSnNm3atNGCBQs0Z84cNWvWTKtXr9aECRNcFDEAAAAAAAAAAChvTIZhGK4OAkVjs9lksVhktVpZQQQAAAAAAAAAQDlXmLwBW8xdZ+Li4nTy5EktX768wH06TVgqd7NPyQUFuNi26bGuDgEAAAAAAAAAyhS2mAMAAAAAAAAAAChnSBABAAAAAAAAAACUM2wxdwOx2+2y2+2O5zabzYXRAAAAAAAAAACAGxUriG4gSUlJslgsjhIWFubqkAAAAAAAAAAAwA2IBNENJD4+Xlar1VEyMjJcHRIAAAAAAAAAALgBscXcDcRsNstsNrs6DAAAAAAAAAAAcINjBREAAAAAAAAAAEA5Q4IIAAAAAAAAAACgnGGLuTJgfWJ/BQQEuDoMAAAAAAAAAABwgyBBdJ1ZtGiRq0MAAAAAAAAAAABlHAmiMqDThKVyN/u4OgygwLZNj3V1CAAAAAAAAABQrnEPIgAAAAAAAAAAgHKGBBEAAAAAAAAAAEA5Q4KohK1cuVIdOnRQYGCgKlWqpLvuukv79++XJF24cEHDhw9XaGiovL29VbNmTSUlJbk4YgAAAAAAAAAAUNaRICphZ86c0dNPP62tW7dq7dq1cnNzU+/evZWdna1XX31Vn3/+uT788EPt2bNHS5YsUXh4eL5j2e122Ww2pwIAAAAAAAAAAFBYHq4OoKy79957nZ6/8847Cg4O1q5du3Tw4EHVrVtXHTp0kMlkUs2aNa84VlJSkhISEkoyXAAAAAAAAAAAUA6wgqiE7d27V/3791dERIQCAgIcK4QOHjyouLg4paamqn79+ho5cqRWr159xbHi4+NltVodJSMjoxTOAAAAAAAAAAAAlDUkiErY3XffrePHj2vBggVKSUlRSkqKpL/vP9S8eXMdOHBAU6dO1blz59SvXz/17ds337HMZrMCAgKcCgAAAAAAAAAAQGGxxVwJOnbsmPbs2aMFCxaoY8eOkqSNGzc6tQkICND999+v+++/X3379lWPHj10/PhxBQUFuSJkAAAAAAAAAABQDpAgKkEVK1ZUpUqVNH/+fIWGhurgwYMaN26c4/grr7yi0NBQ3XzzzXJzc9NHH32kkJAQBQYGFmqe9Yn9WU0EAAAAAAAAAAAKjARRCXJzc9P777+vkSNHqnHjxqpfv75effVVxcTESJIqVKigadOmae/evXJ3d1erVq305Zdfys2Nnf8AAAAAAAAAAEDJIUFUwrp27apdu3Y51RmGoZiYGEVFRWn79u0uigwAAAAAAAAAAJRXJIhc5JNPPpGnp6ckKTw8XKNHj9bo0aOLNFanCUvlbvYpxuiAkrVteqyrQwAAAAAAAACAco0EkYsEBQW5OgQAAAAAAAAAAFBOcbMbF4mJidHo0aMVExOj3377TU899ZRMJpNMJpOrQwMAAAAAAAAAAGUcCSIX++STT1S9enVNmTJFmZmZyszMzLet3W6XzWZzKgAAAAAAAAAAAIVFgsjFgoKC5O7urgoVKigkJEQhISH5tk1KSpLFYnGUsLCwUowUAAAAAAAAAACUFSSIbiDx8fGyWq2OkpGR4eqQAAAAAAAAAADADcjD1QGg4Mxms8xms6vDAAAAAAAAAAAANzhWEF0HvLy8lJWV5eowAAAAAAAAAABAOUGC6DoQHh6u9evX69ChQ/rrr79cHQ4AAAAAAAAAACjj2GLuOjBlyhQNGzZMtWvXlt1ul2EYheq/PrG/AgICSig6AAAAAAAAAABQ1piMwmYjcN2w2WyyWCyyWq0kiAAAAAAAAAAAKOcKkzdgBVEJSU5OVufOnXXixAkFBgaW6FydJiyVu9mnROdA2bBteqyrQwAAAAAAAAAAXAe4B1ERmEymK5bJkye7OkQAAAAAAAAAAIB8sYKoCDIzMx2PP/jgA02cOFF79uxx1Pn7+2vr1q2uCA0AAAAAAAAAAOCqWEFUBCEhIY5isVhkMpmc6vz9/R1tt23bppYtW8rX11ft2rVzSiRJ0meffabmzZvL29tbERERSkhI0KVLl0r7lAAAAAAAAAAAQDlCgqiEjR8/XjNnztTWrVvl4eGhQYMGOY5t2LBBsbGxGjVqlHbt2qU333xTixYt0gsvvJDnWHa7XTabzakAAAAAAAAAAAAUFgmiEvbCCy8oOjpakZGRGjdunL777judP39ekpSQkKBx48ZpwIABioiIULdu3TR16lS9+eabeY6VlJQki8XiKGFhYaV5KgAAAAAAAAAAoIwgQVTCmjZt6ngcGhoqSTpy5IgkKS0tTVOmTJG/v7+jPProo8rMzNTZs2dzjRUfHy+r1eooGRkZpXMSAAAAAAAAAACgTPFwdQBlnaenp+OxyWSSJGVnZ0uSTp8+rYSEBPXp0ydXP29v71x1ZrNZZrO5hCIFAAAAAAAAAADlBQkiF2revLn27NmjOnXquDoUAAAAAAAAAABQjpAgcqGJEyfqrrvuUo0aNdS3b1+5ubkpLS1NP/30kxITEws8zvrE/goICCjBSAEAAAAAAAAAQFnCPYhcqHv37lqxYoVWr16tVq1aqU2bNpo1a5Zq1qzp6tAAAAAAAAAAAEAZZjIMw3B1ECgam80mi8Uiq9XKCiIAAAAAAAAAAMq5wuQN2GKuhMTFxenkyZNavnx5ic/VacJSuZt9SnweXH+2TY91dQgAAAAAAAAAgBsQW8wBAAAAAAAAAACUMySIAAAAAAAAAAAAyhkSRNdo2bJlatKkiXx8fFSpUiV17dpVZ86ccRyfMWOGQkNDValSJT355JO6ePGi45jdbteYMWNUrVo1+fn56ZZbblFycnK+c9ntdtlsNqcCAAAAAAAAAABQWCSIrkFmZqb69++vQYMGaffu3UpOTlafPn1kGIYk6dtvv9X+/fv17bffavHixVq0aJEWLVrk6D98+HB9//33ev/997Vjxw7dd9996tGjh/bu3ZvnfElJSbJYLI4SFhZWGqcJAAAAAAAAAADKGJORk81Aof34449q0aKF0tPTVbNmTadjcXFxSk5O1v79++Xu7i5J6tevn9zc3PT+++/r4MGDioiI0MGDB1W1alVHv65du6p169Z68cUXc81nt9tlt9sdz202m8LCwtRsxBtyN/uU0FnierZteqyrQwAAAAAAAAAAXCdsNpssFousVqsCAgKu2NajlGIqk5o1a6YuXbqoSZMm6t69u2677Tb17dtXFStWlCQ1atTIkRySpNDQUO3cuVOStHPnTmVlZalevXpOY9rtdlWqVCnP+cxms8xmcwmdDQAAAAAAAAAAKC9IEF0Dd3d3rVmzRt99951Wr16t1157TePHj1dKSookydPT06m9yWRSdna2JOn06dNyd3fXtm3bnJJIkuTv7186JwAAAAAAAAAAAMolEkTXyGQyqX379mrfvr0mTpyomjVr6tNPP71qv5tvvllZWVk6cuSIOnbsWAqRAgAAAAAAAAAA/I0E0TVISUnR2rVrddttt6lKlSpKSUnR0aNH1bBhQ+3YseOKfevVq6eHHnpIsbGxmjlzpm6++WYdPXpUa9euVdOmTXXnnXcWOI71if2vupcgAAAAAAAAAABADjdXB3AjCwgI0Pr163XHHXeoXr16mjBhgmbOnKnbb7+9QP0XLlyo2NhYPfPMM6pfv7569eqlLVu2qEaNGiUcOQAAAAAAAAAAKM9MhmEYrg7iehYTE6OoqCjNnj1b4eHhGj16tEaPHl3ocUwmkz799FP16tWr2GKz2WyyWCxqNuINuZt9im1c3Di2TY91dQgAAAAAAAAAgOtETt7AarVedecxVhAVwpYtWzR06FDHc5PJpOXLlzu1mTx5sqKioko3MAAAAAAAAAAAgELgHkSFEBwc7OoQAAAAAAAAAAAArhkriAohPDxcs2fPdjyWpN69e8tkMik8PFyLFi1SQkKC0tLSZDKZZDKZtGjRojzHysjIUL9+/RQYGKigoCD17NlT6enppXIeAAAAAAAAAACgfGMFURFt2bJFVapU0cKFC9WjRw+5u7vL399fP/30k1auXKmvv/5akmSxWHL1vXjxorp37662bdtqw4YN8vDwUGJionr06KEdO3bIy8srzzntdrvsdrvjuc1mK5mTAwAAAAAAAAAAZRoJoiLK2W4uMDBQISEhjnp/f395eHg41V3ugw8+UHZ2tt566y2ZTCZJ0sKFCxUYGKjk5GTddtttefZLSkpSQkJCMZ4FAAAAAAAAAAAoj9hizgXS0tK0b98+VahQQf7+/vL391dQUJDOnz+v/fv359svPj5eVqvVUTIyMkoxagAAAAAAAAAAUFawgsgFTp8+rRYtWmjJkiW5juWsTMqL2WyW2WwuydAAAAAAAAAAAEA5QILoGnh6eiorK8upzsvLK1fd5Zo3b64PPvhAVapUUUBAQEmGCAAAAAAAAAAAkAtbzF2D8PBwrV27Vn/88YdOnDjhqDtw4IBSU1P1119/yW635+r30EMPqXLlyurZs6c2bNigAwcOKDk5WSNHjtTvv/9e2qcBAAAAAAAAAADKGVYQXYOZM2fq6aef1oIFC1StWjWlp6fr3nvv1SeffKLOnTvr5MmTWrhwoeLi4pz6+fr6av369XruuefUp08fnTp1StWqVVOXLl2KtKJofWJ/ViIBAAAAAAAAAIACMxmGYbg6CBSNzWaTxWKR1WolQQQAAAAAAAAAQDlXmLwBK4iKQUxMjKKiojR79myXzN9pwlK5m31cMjdca9v0WFeHAAAAAAAAAAC4AXEPIgAAAAAAAAAAgHKGBNF16MKFC64OAQAAAAAAAAAAlGEkiIpJdna2xo4dq6CgIIWEhGjy5MmOYydPntSQIUMUHBysgIAA3XrrrUpLS3Mcnzx5sqKiovTWW2+pVq1a8vb2znMOu90um83mVAAAAAAAAAAAAAqLBFExWbx4sfz8/JSSkqJp06ZpypQpWrNmjSTpvvvu05EjR/TVV19p27Ztat68ubp06aLjx487+u/bt08ff/yxPvnkE6WmpuY5R1JSkiwWi6OEhYWVxqkBAAAAAAAAAIAyxsPVAZQVTZs21aRJkyRJdevW1dy5c7V27Vr5+Pho8+bNOnLkiMxmsyRpxowZWr58uZYtW6ahQ4dK+ntbuXfffVfBwcH5zhEfH6+nn37a8dxms5EkAgAAAAAAAAAAhUaCqJg0bdrU6XloaKiOHDmitLQ0nT59WpUqVXI6fu7cOe3fv9/xvGbNmldMDkmS2Wx2JJkAAAAAAAAAAACKigRRMfH09HR6bjKZlJ2drdOnTys0NFTJycm5+gQGBjoe+/n5lXCEAAAAAAAAAAAAfyNBVMKaN2+uP/74Qx4eHgoPD3d1OAAAAAAAAAAAACSISlrXrl3Vtm1b9erVS9OmTVO9evV0+PBhffHFF+rdu7datmx5zXOsT+yvgICAYogWAAAAAAAAAACUB26uDqCsM5lM+vLLL9WpUycNHDhQ9erV0wMPPKDffvtNN910k6vDAwAAAAAAAAAA5ZDJMAzD1UGUJYZhaNiwYVq2bJlOnDih7du3KyoqqkTmstlsslgsajbiDbmbfUpkDpSubdNjXR0CAAAAAAAAAOAGlZM3sFqtV915jC3mitnKlSu1aNEiJScnKyIiQpUrV3Z1SAAAAAAAAAAAAE5IEBWz/fv3KzQ0VO3atStSf8MwlJWVJQ8PfjQAAAAAAAAAAKBkcA+iYhQXF6cRI0bo4MGDMplMCg8Pl91u18iRI1WlShV5e3urQ4cO2rJli6NPcnKyTCaTvvrqK7Vo0UJms1kbN2504VkAAAAAAAAAAICyjmUqxWjOnDmqXbu25s+fry1btsjd3V1jx47Vxx9/rMWLF6tmzZqaNm2aunfvrn379ikoKMjRd9y4cZoxY4YiIiJUsWLFPMe32+2y2+2O5zabrcTPCQAAAAAAAAAAlD2sICpGFotFFSpUkLu7u0JCQuTr66t58+Zp+vTpuv322xUZGakFCxbIx8dHb7/9tlPfKVOmqFu3bqpdu7ZT4uifkpKSZLFYHCUsLKw0TgsAAAAAAAAAAJQxJIhK0P79+3Xx4kW1b9/eUefp6anWrVtr9+7dTm1btmx51fHi4+NltVodJSMjo9hjBgAAAAAAAAAAZR9bzF0n/Pz8rtrGbDbLbDaXQjQAAAAAAAAAAKAsYwVRCapdu7a8vLy0adMmR93Fixe1ZcsWRUZGujAyAAAAAAAAAABQnrGCqAT5+fnp8ccf17PPPqugoCDVqFFD06ZN09mzZzV48GBXhwcAAAAAAAAAAMopEkQl7KWXXlJ2drYeeeQRnTp1Si1bttSqVatUsWLFYptjfWJ/BQQEFNt4AAAAAAAAAACgbDMZhmG4OggUjc1mk8VikdVqJUEEAAAAAAAAAEA5V5i8ASuIyoBOE5bK3ezj6jBQDLZNj3V1CAAAAAAAAACAcsDN1QEAAAAAAAAAAACgdJEgcoGLFy+6OgQAAAAAAAAAAFCOkSC6ivnz56tq1arKzs52qu/Zs6cGDRokSfrss8/UvHlzeXt7KyIiQgkJCbp06ZKjrclk0rx583TPPffIz89PiYmJqlOnjmbMmOE0Zmpqqkwmk/bt21fyJwYAAAAAAAAAAMotEkRXcd999+nYsWP69ttvHXXHjx/XypUr9dBDD2nDhg2KjY3VqFGjtGvXLr355ptatGiRXnjhBadxJk+erN69e2vnzp0aPHiwBg0apIULFzq1WbhwoTp16qQ6derkGYvdbpfNZnMqAAAAAAAAAAAAhUWC6CoqVqyo22+/Xe+9956jbtmyZapcubI6d+6shIQEjRs3TgMGDFBERIS6deumqVOn6s0333Qa58EHH9TAgQMVERGhGjVqKC4uTnv27NHmzZsl/b3t3HvvvedYlZSXpKQkWSwWRwkLCyuZkwYAAAAAAAAAAGUaCaICeOihh/Txxx/LbrdLkpYsWaIHHnhAbm5uSktL05QpU+Tv7+8ojz76qDIzM3X27FnHGC1btnQas2rVqrrzzjv1zjvvSJL++9//ym6367777ss3jvj4eFmtVkfJyMgogbMFAAAAAAAAAABlnYerA7gR3H333TIMQ1988YVatWqlDRs2aNasWZKk06dPKyEhQX369MnVz9vb2/HYz88v1/EhQ4bokUce0axZs7Rw4ULdf//98vX1zTcOs9kss9lcDGcEAAAAAAAAAADKMxJEBeDt7a0+ffpoyZIl2rdvn+rXr6/mzZtLkpo3b649e/bke9+gK7njjjvk5+enefPmaeXKlVq/fn1xhw4AAAAAAAAAAJALCaICeuihh3TXXXfp559/1sMPP+yonzhxou666y7VqFFDffv2dWw799NPPykxMfGKY7q7uysuLk7x8fGqW7eu2rZtW6TY1if2V0BAQJH6AgAAAAAAAACA8od7EBXQrbfeqqCgIO3Zs0cPPvigo7579+5asWKFVq9erVatWqlNmzaaNWuWatasWaBxBw8erAsXLmjgwIElFToAAAAAAAAAAIATk2EYhquDKM82bNigLl26KCMjQ/PmzdPy5cuVmppaoL42m00Wi0VWq5UVRAAAAAAAAAAAlHOFyRuwxVwR/PHHH0pKStIXX3yh33//XRaLRXXq1NHDDz+sAQMGyNfX96pj2O12HT16VJMnT9Z9992nm266qcjxdJqwVO5mnyL3x/Vj2/RYV4cAAAAAAAAAACgHSBAV0q+//qr27dsrMDBQL774opo0aSKz2aydO3dq/vz5qlatmu65556rjrN06VINHjxYUVFRevfdd0shcgAAAAAAAAAAgL+RICqkJ554Qh4eHtq6dav8/Pwc9REREerZs6dyduw7ePCgRowYobVr18rNzU09evTQa6+95lgpFBcXpz/++EOzZs1SgwYN1K9fPwUHB7vknAAAAAAAAAAAQPni5uoAbiTHjh3T6tWr9eSTTzolh/7JZDIpOztbPXv21PHjx7Vu3TqtWbNGv/76q+6//35Huw8//FCTJ0/Wiy++qK1btyo0NFSvv/76Fee32+2y2WxOBQAAAAAAAAAAoLBYQVQI+/btk2EYql+/vlN95cqVdf78eUnSk08+qa5du2rnzp06cOCAwsLCJEnvvvuuGjVqpC1btqhVq1aaPXu2Bg8erMGDB0uSEhMT9fXXXzvGyUtSUpISEhJK6OwAAAAAAAAAAEB5wQqiYrB582alpqaqUaNGstvt2r17t8LCwhzJIUmKjIxUYGCgdu/eLUnavXu3brnlFqdx2rZte8V54uPjZbVaHSUjI6P4TwYAAAAAAAAAAJR5rCAqhDp16shkMmnPnj1O9REREZIkHx+fEp3fbDbLbDaX6BwAAAAAAAAAAKDsYwVRIVSqVEndunXT3LlzdebMmXzbNWzYUBkZGU4rfHbt2qWTJ08qMjLS0SYlJcWp3w8//FAygQMAAAAAAAAAAPwDCaJCev3113Xp0iW1bNlSH3zwgXbv3q09e/boP//5j/73v//J3d1dXbt2VZMmTfTQQw/pxx9/1ObNmxUbG6vo6Gi1bNlSkjRq1Ci98847WrhwoX755RdNmjRJP//8s4vPDgAAAAAAAAAAlAcmwzAMVwdxo8nMzNSLL76oL774Qr///rvMZrMiIyN133336YknnpCvr68OHjyoESNGaO3atXJzc1OPHj302muv6aabbnKM8+KLL2rWrFk6f/687r33Xt10001atWqVUlNTCxSHzWaTxWKR1WpVQEBACZ0tAAAAAAAAAAC4ERQmb0CC6AZGgggAAAAAAAAAAOQoTN7Ao5RiQgnqNGGp3M0+rg4D+dg2PdbVIQAAAAAAAAAA4IR7EAEAAAAAAAAAAJQzJIiuQ4Zh6NKlS64OAwAAAAAAAAAAlFEkiEqJ3W7XyJEjVaVKFXl7e6tDhw7asmWLJCk5OVkmk0lfffWVWrRoIbPZrI0bN7o4YgAAAAAAAAAAUFaRIColY8eO1ccff6zFixfrxx9/VJ06ddS9e3cdP37c0WbcuHF66aWXtHv3bjVt2jTXGHa7XTabzakAAAAAAAAAAAAUFgmiUnDmzBnNmzdP06dP1+23367IyEgtWLBAPj4+evvttx3tpkyZom7duql27doKCgrKNU5SUpIsFoujhIWFleZpAAAAAAAAAACAMoIEUSnYv3+/Ll68qPbt2zvqPD091bp1a+3evdtR17JlyyuOEx8fL6vV6igZGRklFjMAAAAAAAAAACi7PFwdAP4fPz+/Kx43m80ym82lFA0AAAAAAAAAACirWEFUCmrXri0vLy9t2rTJUXfx4kVt2bJFkZGRLowMAAAAAAAAAACUR6wgKgV+fn56/PHH9eyzzyooKEg1atTQtGnTdPbsWQ0ePFhpaWnXNP76xP4KCAgopmgBAAAAAAAAAEBZR4KolLz00kvKzs7WI488olOnTqlly5ZatWqVKlas6OrQAAAAAAAAAABAOWMyDMNwdRA3spiYGEVFRWn27NmlPrfNZpPFYpHVamUFEQAAAAAAAAAA5Vxh8gasIHKx9PR01apVS9u3b1dUVFSRxug0YanczT7FGxiKzbbpsa4OAQAAAAAAAAAAJ26uDgAAAAAAAAAAAACliwRRMbh06ZKGDx8ui8WiypUr6/nnn1fOzn0mk0nLly93ah8YGKhFixZJkmrVqiVJuvnmm2UymRQTE1OKkQMAAAAAAAAAgPKIBFExWLx4sTw8PLR582bNmTNHr7zyit56660C9d28ebMk6euvv1ZmZqY++eSTfNva7XbZbDanAgAAAAAAAAAAUFjcg6gYhIWFadasWTKZTKpfv7527typWbNm6dFHH71q3+DgYElSpUqVFBIScsW2SUlJSkhIKJaYAQAAAAAAAABA+cUKomLQpk0bmUwmx/O2bdtq7969ysrKKtZ54uPjZbVaHSUjI6NYxwcAAAAAAAAAAOUDK4hKmMlkctyPKMfFixeLNJbZbJbZbC6OsAAAAAAAAAAAQDnGCqJikJKS4vT8hx9+UN26deXu7q7g4GBlZmY6ju3du1dnz551PPfy8pKkYl9tBAAAAAAAAAAAkB8SRMXg4MGDevrpp7Vnzx4tXbpUr732mkaNGiVJuvXWWzV37lxt375dW7du1WOPPSZPT09H3ypVqsjHx0crV67Un3/+KavV6qrTAAAAAAAAAAAA5QRbzBWD2NhYnTt3Tq1bt5a7u7tGjRqloUOHSpJmzpypgQMHqmPHjqpatarmzJmjbdu2Ofp6eHjo1Vdf1ZQpUzRx4kR17NhRycnJhZp/fWJ/BQQEFOcpAQAAAAAAAACAMsxkXH6DHNwwbDabLBaLrFYrCSIAAAAAAAAAAMq5wuQNWEFUQIsWLdLo0aN18uTJfNvExcXp5MmTWr58+VXHS09PV61atbR9+3ZFRUVdU2ydJiyVu9nnmsZAwW2bHuvqEAAAAAAAAAAAuCYkiIrRnDlzxIIsAAAAAAAAAABwvSNBVIwsFourQwAAAAAAAAAAALgqN1cH4EorVqxQYGCgsrKyJEmpqakymUwaN26co82QIUP08MMPO56vWrVKDRs2lL+/v3r06KHMzEzHsbi4OPXq1cvxPDs7W9OmTVOdOnVkNptVo0YNvfDCC04x/Prrr+rcubN8fX3VrFkzff/99yV0tgAAAAAAAAAAAH8r1wmijh076tSpU9q+fbskad26dapcubKSk5MdbdatW6eYmBhJ0tmzZzVjxgz9+9//1vr163Xw4EGNGTMm3/Hj4+P10ksv6fnnn9euXbv03nvv6aabbnJqM378eI0ZM0apqamqV6+e+vfvr0uXLuU5nt1ul81mcyoAAAAAAAAAAACFVa4TRBaLRVFRUY6EUHJysp566ilt375dp0+f1qFDh7Rv3z5FR0dLki5evKg33nhDLVu2VPPmzTV8+HCtXbs2z7FPnTqlOXPmaNq0aRowYIBq166tDh06aMiQIU7txowZozvvvFP16tVTQkKCfvvtN+3bty/PMZOSkmSxWBwlLCys+F4MAAAAAAAAAABQbpTrBJEkRUdHKzk5WYZhaMOGDerTp48aNmyojRs3at26dapatarq1q0rSfL19VXt2rUdfUNDQ3XkyJE8x929e7fsdru6dOlyxfmbNm3qNJ6kfMeMj4+X1Wp1lIyMjEKdKwAAAAAAAAAAgCR5uDoAV4uJidE777yjtLQ0eXp6qkGDBoqJiVFycrJOnDjhWD0kSZ6enk59TSaTDMPIc1wfH58Czf/PMU0mk6S/712UF7PZLLPZXKBxAQAAAAAAAAAA8lPuVxDl3Ido1qxZjmRQToIoOTnZcf+hwqpbt658fHzy3YIOAAAAAAAAAADAVcr9CqKKFSuqadOmWrJkiebOnStJ6tSpk/r166eLFy86rSAqDG9vbz333HMaO3asvLy81L59ex09elQ///yzBg8eXJynoPWJ/RUQEFCsYwIAAAAAAAAAgLKr3CeIpL/vQ5SamupYLRQUFKTIyEj9+eefql+/fpHHff755+Xh4aGJEyfq8OHDCg0N1WOPPVZMUQMAAAAAAAAAABSNycjvJjq4JjExMYqKitLs2bNLbA6bzSaLxSKr1coKIgAAAAAAAAAAyrnC5A1YQVQGdJqwVO5mH1eHUW5smx7r6hAAAAAAAAAAALgmbq4OAAAAAAAAAAAAAKWLBFEJunTpkoYPHy6LxaLKlSvr+eefV86Ofna7XWPGjFG1atXk5+enW265RcnJya4NGAAAAAAAAAAAlAskiErQ4sWL5eHhoc2bN2vOnDl65ZVX9NZbb0mShg8fru+//17vv/++duzYofvuu089evTQ3r178x3PbrfLZrM5FQAAAAAAAAAAgMLiHkQlKCwsTLNmzZLJZFL9+vW1c+dOzZo1S927d9fChQt18OBBVa1aVZI0ZswYrVy5UgsXLtSLL76Y53hJSUlKSEgozVMAAAAAAAAAAABlECuISlCbNm1kMpkcz9u2bau9e/dq586dysrKUr169eTv7+8o69at0/79+/MdLz4+Xlar1VEyMjJK4zQAAAAAAAAAAEAZwwoiFzh9+rTc3d21bds2ubu7Ox3z9/fPt5/ZbJbZbC7p8AAAAAAAAAAAQBlHgqgEpaSkOD3/4YcfVLduXd18883KysrSkSNH1LFjRxdFBwAAAAAAAAAAyiu2mCtBBw8e1NNPP609e/Zo6dKleu211zRq1CjVq1dPDz30kGJjY/XJJ5/owIED2rx5s5KSkvTFF1+4OmwAAAAAAAAAAFDGsYKoBMXGxurcuXNq3bq13N3dNWrUKA0dOlSStHDhQiUmJuqZZ57RoUOHVLlyZbVp00Z33XVXoedZn9hfAQEBxR0+AAAAAAAAAAAoo0yGYRiuDgJFY7PZZLFYZLVaSRABAAAAAAAAAFDOFSZvwAqiQkhOTlbnzp114sQJBQYGFnkck8mkTz/9VL169SqWuDpNWCp3s0+xjIWr2zY91tUhAAAAAAAAAABwTUgQXUFMTIyioqI0e/bsYh03MzNTFStWLNYxAQAAAAAAAAAACooEkQuEhIRc8fjFixfl6elZStEAAAAAAAAAAIDyxs3VAVyv4uLitG7dOs2ZM0cmk0kmk0np6emSpG3btqlly5by9fVVu3bttGfPHqe+n332mZo3by5vb29FREQoISFBly5dchw3mUxavny5JCk9PV0mk0kffPCBoqOj5e3trSVLlpTWaQIAAAAAAAAAgHKIBFE+5syZo7Zt2+rRRx9VZmamMjMzFRYWJkkaP368Zs6cqa1bt8rDw0ODBg1y9NuwYYNiY2M1atQo7dq1S2+++aYWLVqkF1544YrzjRs3TqNGjdLu3bvVvXv3PNvY7XbZbDanAgAAAAAAAAAAUFgkiPJhsVjk5eUlX19fhYSEKCQkRO7u7pKkF154QdHR0YqMjNS4ceP03Xff6fz585KkhIQEjRs3TgMGDFBERIS6deumqVOn6s0337zifKNHj1afPn1Uq1YthYaG5tkmKSlJFovFUXISVgAAAAAAAAAAAIVBgqgImjZt6nick8w5cuSIJCktLU1TpkyRv7+/o+SsQjp79my+Y7Zs2fKq88bHx8tqtTpKRkbGNZ4JAAAAAAAAAAAojzxcHcCNyNPT0/HYZDJJkrKzsyVJp0+fVkJCgvr06ZOrn7e3d75j+vn5XXVes9kss9lc2HABAAAAAAAAAACckCC6Ai8vL2VlZRWqT/PmzbVnzx7VqVOnhKICAAAAAAAAAAC4NiSIriA8PFwpKSlKT0+Xv7+/Y5XQlUycOFF33XWXatSoob59+8rNzU1paWn66aeflJiYWApRAwAAAAAAAAAAXBkJoisYM2aMBgwYoMjISJ07d04LFy68ap/u3btrxYoVmjJlil5++WV5enqqQYMGGjJkSInFuT6xvwICAkpsfAAAAAAAAAAAULaYDMMwXB0EisZms8lischqtZIgAgAAAAAAAACgnCtM3oAVRFeQnJyszp0768SJEwoMDHR1OPnqNGGp3M0+rg6j3Ng2PdbVIQAAAAAAAAAAcE3cXB3A9SQmJkajR492dRgAAAAAAAAAAAAligSRC1y8eNHVIQAAAAAAAAAAgHKMBNH/Ly4uTuvWrdOcOXNkMplkMpmUnp4uSdq2bZtatmwpX19ftWvXTnv27HHq+9lnn6l58+by9vZWRESEEhISdOnSJcdxk8mkefPm6Z577pGfn59eeOGFAvW7nN1ul81mcyoAAAAAAAAAAACFRYLo/zdnzhy1bdtWjz76qDIzM5WZmamwsDBJ0vjx4zVz5kxt3bpVHh4eGjRokKPfhg0bFBsbq1GjRmnXrl168803tWjRIkcSKMfkyZPVu3dv7dy5U4MGDSpwv39KSkqSxWJxlJz4AAAAAAAAAAAACsNkGIbh6iCuFzExMYqKitLs2bMlScnJyercubO+/vprdenSRZL05Zdf6s4779S5c+fk7e2trl27qkuXLoqPj3eM85///Edjx47V4cOHJf29gmj06NGaNWuWo01B+l3ObrfLbrc7nttsNoWFhanZiDfkbvYpttcBV7ZteqyrQwAAAAAAAAAAIBebzSaLxSKr1aqAgIArtvUopZhuaE2bNnU8Dg0NlSQdOXJENWrUUFpamjZt2uS08icrK0vnz5/X2bNn5evrK0lq2bKl05gF7fdPZrNZZrO5WM8NAAAAAAAAAACUPySICsDT09Px2GQySZKys7MlSadPn1ZCQoL69OmTq5+3t7fjsZ+fn9OxgvYDAAAAAAAAAAAobiSI/sHLy0tZWVmF6tO8eXPt2bNHderUKZV+AAAAAAAAAAAA14oE0T+Eh4crJSVF6enp8vf3d6wSupKJEyfqrrvuUo0aNdS3b1+5ubkpLS1NP/30kxITE4u9X17WJ/a/6l6CAAAAAAAAAAAAOdxcHcD1ZMyYMXJ3d1dkZKSCg4N18ODBq/bp3r27VqxYodWrV6tVq1Zq06aNZs2apZo1a5ZIPwAAAAAAAAAAgGtlMgzDcHUQZcmiRYs0evRonTx58ortTCaTPv30U/Xq1avIc9lsNlksFjUb8YbczT5FHgeFs216rKtDAAAAAAAAAAAgl5y8gdVqverOY6wgKmb333+/fvnlF8fzyZMnKyoqynUBAQAAAAAAAAAAXIZ7EBUzHx8f+fiwmgcAAAAAAAAAAFy/WEFUACtWrFBgYKCysrIkSampqfr/2Lv7sKjq/P/jr+Fu5EYGQRNUvEeFEtHQUlPGtLCy8ma1iCIy7cbSTNNkNRUzKZXSdM0yE23NarW1ti1bcx1UMm8I0VYyNV2p2KjUmdAaEeb3R1/nt7NKMgZMMc/HdX2ui3PO53zO6zP8+b7e5xgMBk2ZMsU5Z9SoUbrzzjuVk5OjsLAwST+/bi4zM1OFhYUyGAwyGAzKyclx3vPdd99pyJAhCgoKUkxMjN5555263BYAAAAAAAAAAPBSFIiqoU+fPvrhhx9UUFAgScrNzVXjxo1lsVicc3Jzc2U2m13uu+222zRx4kRdfvnlKikpUUlJiW677Tbn9czMTI0YMUJ79+7VjTfeqNTUVB0/frzKHHa7XTabzWUAAAAAAAAAAAC4iwJRNZhMJiUkJDgLQhaLRY8++qgKCgpUVlamr776SocOHVJSUpLLfYGBgQoJCZGfn58iIyMVGRnp8vq59PR0paSkqH379pozZ47Kysq0c+fOKnNkZWXJZDI5R3R0dK3sFwAAAAAAAAAA1G8UiKopKSlJFotFDodDW7du1dChQxUbG6tt27YpNzdXzZo1U0xMjFtrxsfHO/8ODg5WaGioSktLq5yfkZEhq9XqHMXFxZe8HwAAAAAAAAAA4L38PB3g98JsNuuVV15RYWGh/P391alTJ5nNZlksFp04ceK87qHq8Pf3dzk2GAyqrKyscr7RaJTRaHT7OQAAAAAAAAAAAP+NDqJqOvcdoueee85ZDDpXILJYLOd9f+icgIAAVVRU1GFSAAAAAAAAAACAX0aBqJoaNWqk+Ph4rV692lkM6tu3rz755BN9/vnnVXYQtW7dWkeOHNGePXv03XffyW6312FqAAAAAAAAAACA8/GKOTckJSVpz549zgJReHi44uLi9M0336hjx44XvGfYsGF666231K9fP508eVIrVqxQenp6jebaMjtFoaGhNbomAAAAAAAAAACovwwOh8Ph6RC4NDabTSaTSVarlQIRAAAAAAAAAABezp26AR1Ev8DhcOj+++/X2rVrdeLECRUUFCghIcHTsc7Td9oa+RoDPR3jdyt/XpqnIwAAAAAAAAAAUKcoEP2CDRs2KCcnRxaLRW3btlXjxo09HQkAAAAAAAAAAOBXo0D0Cw4fPqyoqCj16tXrgtfPnDmjgICAOk4FAAAAAAAAAADw6/h4OsBvVXp6usaOHatjx47JYDCodevWMpvNevjhhzV+/Hg1btxYycnJkqTc3Fz16NFDRqNRUVFRmjJlis6ePetcy2w2a+zYsRo/frwaNWqkpk2batmyZTp16pTuueceNWzYUO3bt9f777/vqe0CAAAAAAAAAAAvQoGoCgsXLtSsWbPUokULlZSUaNeuXZKklStXKiAgQHl5eVq6dKm++uor3XjjjerevbsKCwv1wgsvaPny5Zo9e7bLeitXrlTjxo21c+dOjR07Vg8++KCGDx+uXr166ZNPPtH111+vu+66S6dPn64yk91ul81mcxkAAAAAAAAAAADuokBUBZPJpIYNG8rX11eRkZFq0qSJJCkmJkZz585Vx44d1bFjRy1ZskTR0dFavHixOnXqpMGDByszM1PZ2dmqrKx0rtelSxdNmzZNMTExysjIUIMGDdS4cWONHj1aMTExmj59ur7//nvt3bu3ykxZWVkymUzOER0dXeu/AwAAAAAAAAAAqH8oELnpyiuvdDkuKipSz549ZTAYnOd69+6tsrIyffnll85z8fHxzr99fX0VERGhzp07O881bdpUklRaWlrlszMyMmS1Wp2juLj4V+8HAAAAAAAAAAB4Hz9PB/i9CQ4OvqT7/P39XY4NBoPLuXMFpv/uOvpfRqNRRqPxkp4PAAAAAAAAAABwDh1Ev1JsbKy2b98uh8PhPJeXl6eGDRuqRYsWHkwGAAAAAAAAAABwYXQQ/UpjxozRggULNHbsWD388MM6cOCAZsyYoQkTJsjHp27qb1tmpyg0NLROngUAAAAAAAAAAH7/KBD9Ss2bN9d7772nSZMmqUuXLgoPD9e9996radOmeToaAAAAAAAAAADABRkc//1uNFSL2WxWQkKCFixY4NEcNptNJpNJXcYula8x0KNZfmvy56V5OgIAAAAAAAAAAHXqXN3AarVe9M1jdBBdgrfeekv+/v7Vmnv06FG1adNGBQUFSkhIqN1gAAAAAAAAAAAA1UCB6BKEh4d7OgIAAAAAAAAAAMAl8/F0gN8js9ms8ePHS5Jat26tOXPmaOTIkWrYsKFatmypl156yTm3TZs2kqSuXbvKYDDIbDZLkiorKzVr1iy1aNFCRqNRCQkJ2rBhQ11vBQAAAAAAAAAAeCEKRDUgOztbiYmJKigo0JgxY/Tggw/qwIEDkqSdO3dKkj788EOVlJTorbfekiQtXLhQ2dnZmj9/vvbu3avk5GTdcsstOnjwYJXPsdvtstlsLgMAAAAAAAAAAMBdFIhqwI033qgxY8aoffv2evzxx9W4cWNt3rxZktSkSRNJUkREhCIjI52vp5s/f74ef/xx3X777erYsaOeeeYZJSQkaMGCBVU+JysrSyaTyTmio6NrfW8AAAAAAAAAAKD+oUBUA+Lj451/GwwGRUZGqrS0tMr5NptNX3/9tXr37u1yvnfv3ioqKqryvoyMDFmtVucoLi7+9eEBAAAAAAAAAIDX8fN0gPrA39/f5dhgMKiysrLGn2M0GmU0Gmt8XQAAAAAAAAAA4F3oIKplAQEBkqSKigrnudDQUDVr1kx5eXkuc/Py8hQXF1en+QAAAAAAAAAAgPehg6iWXXbZZQoMDNSGDRvUokULNWjQQCaTSZMmTdKMGTPUrl07JSQkaMWKFdqzZ49Wr17t6cgAAAAAAAAAAKCeo0BUy/z8/PT8889r1qxZmj59uvr06SOLxaJx48bJarVq4sSJKi0tVVxcnN555x3FxMS4/Ywts1MUGhpaC+kBAAAAAAAAAEB9ZHA4HA5Ph8ClsdlsMplMslqtFIgAAAAAAAAAAPBy7tQN6CDyALPZrISEBC1YsKBG1us7bY18jYE1slZ9kT8vzdMRAAAAAAAAAAD4zaJA5AFvvfWW/P39PR0DAAAAAAAAAAB4KQpEHhAeHu7pCAAAAAAAAAAAwIv5eDqANzKbzRo/frwkacmSJYqJiVGDBg3UtGlT/eEPf/BsOAAAAAAAAAAAUO/RQeRBu3fv1rhx4/Tqq6+qV69eOn78uLZu3VrlfLvdLrvd7jy22Wx1ERMAAAAAAAAAANQzFIg86NixYwoODtagQYPUsGFDtWrVSl27dq1yflZWljIzM+swIQAAAAAAAAAAqI94xZwHXXfddWrVqpXatm2ru+66S6tXr9bp06ernJ+RkSGr1eocxcXFdZgWAAAAAAAAAADUFxSIPKhhw4b65JNPtGbNGkVFRWn69Onq0qWLTp48ecH5RqNRoaGhLgMAAAAAAAAAAMBdFIg8zM/PTwMGDNDcuXO1d+9eHT16VP/85z89HQsAAAAAAAAAANRjfIPIg95991198cUX6tu3rxo1aqT33ntPlZWV6tixo1vrbJmdQjcRAAAAAAAAAACoNgpEHhQWFqa33npLM2fO1E8//aSYmBitWbNGl19+uaejAQAAAAAAAACAeszgcDgcng6BS2Oz2WQymWS1WukgAgAAAAAAAADAy7lTN6CDqB7oO22NfI2Bno7xm5I/L83TEQAAAAAAAAAA+M3y8XQAAAAAAAAAAAAA1C0KRLWkdevWWrBggcu5hIQEzZw5U5JkMBj0wgsv6IYbblBgYKDatm2rtWvX1n1QAAAAAAAAAADgdSgQedATTzyhYcOGqbCwUKmpqbr99ttVVFRU5Xy73S6bzeYyAAAAAAAAAAAA3EWByIOGDx+uUaNGqUOHDnryySeVmJioRYsWVTk/KytLJpPJOaKjo+swLQAAAAAAAAAAqC8oEHlQz549zzv+pQ6ijIwMWa1W5yguLq7tiAAAAAAAAAAAoB7y83SA+srHx0cOh8PlXHl5+a9a02g0ymg0/qo1AAAAAAAAAAAA6CCqJU2aNFFJSYnz2Gaz6ciRIy5zPv744/OOY2Nj6yQfAAAAAAAAAADwXnQQ1ZJrr71WOTk5uvnmmxUWFqbp06fL19fXZc5f/vIXJSYm6pprrtHq1au1c+dOLV++3EOJAQAAAAAAAACAt6BAVEsyMjJ05MgRDRo0SCaTSU8++eR5HUSZmZl6/fXXNWbMGEVFRWnNmjWKi4tz+1lbZqcoNDS0pqIDAAAAAAAAAIB6zuD43w/loE4YDAb99a9/1eDBgy95DZvNJpPJJKvVSoEIAAAAAAAAAAAv507dgA6ieqDvtDXyNQZ6OsZvSv68NE9HAAAAAAAAAADgN8vH0wEAAAAAAAAAAABQt+gg8hDe7AcAAAAAAAAAADyFDqJaZLfbNW7cOF122WVq0KCBrrnmGu3atUuSZLFYZDAYtGnTJiUmJiooKEi9evXSgQMHPJwaAAAAAAAAAADUdxSIatHkyZO1bt06rVy5Up988onat2+v5ORkHT9+3Dln6tSpys7O1u7du+Xn56eRI0dWuZ7dbpfNZnMZAAAAAAAAAAAA7qJAVEtOnTqlF154QfPmzdMNN9yguLg4LVu2TIGBgVq+fLlz3lNPPaWkpCTFxcVpypQp+uijj/TTTz9dcM2srCyZTCbniI6OrqvtAAAAAAAAAACAeoQCUS05fPiwysvL1bt3b+c5f39/9ejRQ0VFRc5z8fHxzr+joqIkSaWlpRdcMyMjQ1ar1TmKi4trKT0AAAAAAAAAAKjP/DwdwNv5+/s7/zYYDJKkysrKC841Go0yGo11kgsAAAAAAAAAANRfdBDVknbt2ikgIEB5eXnOc+Xl5dq1a5fi4uI8mAwAAAAAAAAAAHg7OohqSXBwsB588EFNmjRJ4eHhatmypebOnavTp0/r3nvvVWFhYY09a8vsFIWGhtbYegAAAAAAAAAAoH6jQFSLnn76aVVWVuquu+7SDz/8oMTERH3wwQdq1KiRp6MBAAAAAAAAAAAvZnA4HA5Ph8ClsdlsMplMslqtdBABAAAAAAAAAODl3Kkb0EH0G3D06FG1adNGBQUFSkhIcPv+vtPWyNcYWPPBfsfy56V5OgIAAAAAAAAAAL9ZPp4OAAAAAAAAAAAAgLpFgaiObNiwQddcc43CwsIUERGhQYMG6fDhw5KkNm3aSJK6du0qg8Egs9nswaQAAAAAAAAAAKC+o0BUR06dOqUJEyZo9+7d2rRpk3x8fDRkyBBVVlZq586dkqQPP/xQJSUleuutty64ht1ul81mcxkAAAAAAAAAAADu4htEdWTYsGEux6+88oqaNGmi/fv3q0mTJpKkiIgIRUZGVrlGVlaWMjMzazUnAAAAAAAAAACo/+ggqiMHDx5USkqK2rZtq9DQULVu3VqSdOzYsWqvkZGRIavV6hzFxcW1lBYAAAAAAAAAANRndBDVkZtvvlmtWrXSsmXL1KxZM1VWVuqKK67QmTNnqr2G0WiU0WisxZQAAAAAAAAAAMAbUCCqA99//70OHDigZcuWqU+fPpKkbdu2Oa8HBARIkioqKjySDwAAAAAAAAAAeBcKRHWgUaNGioiI0EsvvaSoqCgdO3ZMU6ZMcV6/7LLLFBgYqA0bNqhFixZq0KCBTCaTBxMDAAAAAAAAAID6jAJRHfDx8dHrr7+ucePG6YorrlDHjh31/PPPy2w2S5L8/Pz0/PPPa9asWZo+fbr69Okji8VS7fW3zE5RaGho7YQHAAAAAAAAAAD1jsHhcDg8HQKXxmazyWQyyWq1UiACAAAAAAAAAMDLuVM3oIOoHug7bY18jYGejvGbkj8vzdMRAAAAAAAAAAD4zfLxdAAAAAAAAAAAAADULQpEAAAAAAAAAAAAXoYCUQ169913FRYWpoqKCknSnj17ZDAYNGXKFOecUaNG6c4775Qkbdu2TX369FFgYKCio6M1btw4nTp1yiPZAQAAAAAAAACA96BAVIP69OmjH374QQUFBZKk3NxcNW7cWBaLxTknNzdXZrNZhw8f1sCBAzVs2DDt3btXb7zxhrZt26aHH364yvXtdrtsNpvLAAAAAAAAAAAAcBcFohpkMpmUkJDgLAhZLBY9+uijKigoUFlZmb766isdOnRISUlJysrKUmpqqsaPH6+YmBj16tVLzz//vFatWqWffvrpgutnZWXJZDI5R3R0dB3uDgAAAAAAAAAA1BcUiGpYUlKSLBaLHA6Htm7dqqFDhyo2Nlbbtm1Tbm6umjVrppiYGBUWFionJ0chISHOkZycrMrKSh05cuSCa2dkZMhqtTpHcXFxHe8OAAAAAAAAAADUB36eDlDfmM1mvfLKKyosLJS/v786deoks9ksi8WiEydOKCkpSZJUVlam+++/X+PGjTtvjZYtW15wbaPRKKPRWKv5AQAAAAAAAABA/UeBqIad+w7Rc8895ywGmc1mPf300zpx4oQmTpwoSerWrZv279+v9u3bezIuAAAAAAAAAADwQgaHw+HwdIj6pmvXrtq3b58WL16sBx54QMePH1dkZKTKy8v12WefqWPHjtq7d6+uvvpqjRw5UqNGjVJwcLD279+vjRs3avHixdV6js1mk8lkktVqVWhoaC3vCgAAAAAAAAAA/Ja5UzfgG0S1ICkpSRUVFTKbzZKk8PBwxcXFKTIyUh07dpQkxcfHKzc3V59//rn69Omjrl27avr06WrWrJkHkwMAAAAAAAAAAG9AB9HvGB1EAAAAAAAAAADgHHfqBnyDqB7oO22NfI2Bno7xm5I/L83TEQAAAAAAAAAA+M3iFXO/ATNnzlRCQoKnYwAAAAAAAAAAAC9BgQgAAAAAAAAAAMDLUCCqAWazWePGjdPkyZMVHh6uyMhIzZw503n92LFjuvXWWxUSEqLQ0FCNGDFC33zzjSQpJydHmZmZKiwslMFgkMFgUE5OzgWfY7fbZbPZXAYAAAAAAAAAAIC7KBDVkJUrVyo4OFg7duzQ3LlzNWvWLG3cuFGVlZW69dZbdfz4ceXm5mrjxo364osvdNttt0mSbrvtNk2cOFGXX365SkpKVFJS4rz2v7KysmQymZwjOjq6LrcIAAAAAAAAAADqCT9PB6gv4uPjNWPGDElSTEyMFi9erE2bNkmS9u3bpyNHjjgLOqtWrdLll1+uXbt2qXv37goJCZGfn58iIyN/8RkZGRmaMGGC89hms1EkAgAAAAAAAAAAbqODqIbEx8e7HEdFRam0tFRFRUWKjo52KeTExcUpLCxMRUVFbj3DaDQqNDTUZQAAAAAAAAAAALiLAlEN8ff3dzk2GAyqrKz0UBoAAAAAAAAAAICqUSCqZbGxsSouLlZxcbHz3P79+3Xy5EnFxcVJkgICAlRRUeGpiAAAAAAAAAAAwMvwDaJaNmDAAHXu3FmpqalasGCBzp49qzFjxigpKUmJiYmSpNatW+vIkSPas2ePWrRooYYNG8poNFb7GVtmp/C6OQAAAAAAAAAAUG10ENUyg8Ggt99+W40aNVLfvn01YMAAtW3bVm+88YZzzrBhwzRw4ED169dPTZo00Zo1azyYGAAAAAAAAAAA1HcGh8Ph8HSI3xuLxaJ+/frpxIkTCgsL81gOm80mk8mkLmOXytcY6LEcv0X589I8HQEAAAAAAAAAgDp1rm5gtVov+uYxOoiqwWw2a/z48Z6OAQAAAAAAAAAAUCMoEAEAAAAAAAAAAHgZCkQXkZ6ertzcXC1cuFAGg0EGg0FHjx6VJOXn5ysxMVFBQUHq1auXDhw44HLv22+/rW7duqlBgwZq27atMjMzdfbsWUnSyJEjNWjQIJf55eXluuyyy7R8+fI62RsAAAAAAAAAAPBOFIguYuHCherZs6dGjx6tkpISlZSUKDo6WpI0depUZWdna/fu3fLz89PIkSOd923dulVpaWl65JFHtH//fr344ovKycnRU089JUkaNWqUNmzYoJKSEuc97777rk6fPq3bbrvtglnsdrtsNpvLAAAAAAAAAAAAcBcFooswmUwKCAhQUFCQIiMjFRkZKV9fX0nSU089paSkJMXFxWnKlCn66KOP9NNPP0mSMjMzNWXKFN19991q27atrrvuOj355JN68cUXJUm9evVSx44d9eqrrzqftWLFCg0fPlwhISEXzJKVlSWTyeQc5wpVAAAAAAAAAAAA7qBA9CvEx8c7/46KipIklZaWSpIKCws1a9YshYSEOMe5LqTTp09L+rmLaMWKFZKkb775Ru+//75LF9L/ysjIkNVqdY7i4uLa2hoAAAAAAAAAAKjH/Dwd4PfM39/f+bfBYJAkVVZWSpLKysqUmZmpoUOHnndfgwYNJElpaWmaMmWKtm/fro8++kht2rRRnz59qnye0WiU0WisyS0AAAAAAAAAAAAvRIGoGgICAlRRUeHWPd26ddOBAwfUvn37KudERERo8ODBWrFihbZv36577rnn10YFAAAAAAAAAAC4KApE1dC6dWvt2LFDR48eVUhIiLNL6JdMnz5dgwYNUsuWLfWHP/xBPj4+Kiws1KeffqrZs2c7540aNUqDBg1SRUWF7r777trcBgAAAAAAAAAAgCQKRNXy2GOP6e6771ZcXJx+/PFH53eDfklycrLeffddzZo1S88884z8/f3VqVMnjRo1ymXegAEDFBUVpcsvv1zNmjW7pHxbZqcoNDT0ku4FAAAAAAAAAADex+BwOByeDuHNysrK1Lx5c61YseKC3yv6JTabTSaTSVarlQIRAAAAAAAAAABezp26AR1EHlJZWalPPvlE3bt3V2RkpG655RZZLBb169dPJ06cUFhYWLXX6jttjXyNgbUX9ncof16apyMAAAAAAAAAAPCb5ePpAN7q2LFj6t69uyRp5syZ8vOjVgcAAAAAAAAAAOoGBSIPad26tY4cOSJJuuqqqzycBgAAAAAAAAAAeBMKRLVsw4YNuuaaaxQWFqaIiAgNGjRIhw8fvqS17Ha7bDabywAAAAAAAAAAAHAXBaJadurUKU2YMEG7d+/Wpk2b5OPjoyFDhqiystLttbKysmQymZwjOjq6FhIDAAAAAAAAAID6jg/f1LJhw4a5HL/yyitq0qSJ9u/fr5CQELfWysjI0IQJE5zHNpuNIhEAAAAAAAAAAHAbHUS17ODBg0pJSVHbtm0VGhqq1q1bS5KOHTvm9lpGo1GhoaEuAwAAAAAAAAAAwF10ENWym2++Wa1atdKyZcvUrFkzVVZW6oorrtCZM2c8HQ0AAAAAAAAAAHgpCkS16Pvvv9eBAwe0bNky9enTR5K0bds2D6cCAAAAAAAAAADejgJRLWrUqJEiIiL00ksvKSoqSseOHdOUKVNq/DlbZqfwujkAAAAAAAAAAFBtfIOoFvn4+Oj1119Xfn6+rrjiCj366KOaN2+ep2MBAAAAAAAAAAAvZ3A4HA5Ph/AEs9mshIQELViwwNNRLpnNZpPJZFKXsUvlawz0dJxalT8vzdMRAAAAAAAAAAD4TTtXN7BarRd98xgdRAAAAAAAAAAAAF6GAhEAAAAAAAAAAICX8eoCUWVlpSZPnqzw8HBFRkZq5syZzmvHjh3TrbfeqpCQEIWGhmrEiBH65ptvnNfT09M1ePBgl/XGjx8vs9nsPF67dq06d+6swMBARUREaMCAATp16pTz+ssvv6zY2Fg1aNBAnTp10pIlS2prqwAAAAAAAAAAAE5+ng7gSStXrtSECRO0Y8cObd++Xenp6erdu7f69+/vLA7l5ubq7Nmzeuihh3TbbbfJYrFUa+2SkhKlpKRo7ty5GjJkiH744Qdt3bpV5z75tHr1ak2fPl2LFy9W165dVVBQoNGjRys4OFh33333Bde02+2y2+3OY5vN9qt/AwAAAAAAAAAA4H28ukAUHx+vGTNmSJJiYmK0ePFibdq0SZK0b98+HTlyRNHR0ZKkVatW6fLLL9euXbvUvXv3i65dUlKis2fPaujQoWrVqpUkqXPnzs7rM2bMUHZ2toYOHSpJatOmjfbv368XX3yxygJRVlaWMjMzL33DAAAAAAAAAAAA8vJXzMXHx7scR0VFqbS0VEVFRYqOjnYWhyQpLi5OYWFhKioqqtbaXbp0Uf/+/dW5c2cNHz5cy5Yt04kTJyRJp06d0uHDh3XvvfcqJCTEOWbPnq3Dhw9XuWZGRoasVqtzFBcXX8KuAQAAAAAAAACAt/PqDiJ/f3+XY4PBoMrKymrd6+Pj43xd3Dnl5eXOv319fbVx40Z99NFH+sc//qFFixZp6tSp2rFjh4KCgiRJy5Yt01VXXeWyhq+vb5XPNBqNMhqN1coHAAAAAAAAAABQFa/uIKpKbGysiouLXTp09u/fr5MnTyouLk6S1KRJE5WUlLjct2fPHpdjg8Gg3r17KzMzUwUFBQoICNBf//pXNW3aVM2aNdMXX3yh9u3bu4w2bdrU+v4AAAAAAAAAAIB38+oOoqoMGDBAnTt3VmpqqhYsWKCzZ89qzJgxSkpKUmJioiTp2muv1bx587Rq1Sr17NlTf/7zn/Xpp5+qa9eukqQdO3Zo06ZNuv7663XZZZdpx44d+vbbbxUbGytJyszM1Lhx42QymTRw4EDZ7Xbt3r1bJ06c0IQJEzy2dwAAAAAAAAAAUP9RILoAg8Ggt99+W2PHjlXfvn3l4+OjgQMHatGiRc45ycnJeuKJJzR58mT99NNPGjlypNLS0rRv3z5JUmhoqLZs2aIFCxbIZrOpVatWys7O1g033CBJGjVqlIKCgjRv3jxNmjRJwcHB6ty5s8aPH+923i2zUxQaGlojewcAAAAAAAAAAPWfwfG/H9LB74bNZpPJZJLVaqVABAAAAAAAAACAl3OnbkAHUR05evSo2rRpo4KCAiUkJFxwjsViUb9+/XTixAmFhYVVe+2+09bI1xhYM0F/o/LnpXk6AgAAAAAAAAAA9YaPpwMAAAAAAAAAAACgblEgqgNnzpzxdAQAAAAAAAAAAAAnCkSS3n33XYWFhamiokKStGfPHhkMBk2ZMsU5Z9SoUbrzzjslSevWrdPll18uo9Go1q1bKzs722W91q1b68knn1RaWppCQ0N13333XfC57733njp06KDAwED169dPR48erZ0NAgAAAAAAAAAA/BcKRJL69OmjH374QQUFBZKk3NxcNW7cWBaLxTknNzdXZrNZ+fn5GjFihG6//Xbt27dPM2fO1BNPPKGcnByXNefPn68uXbqooKBATzzxxHnPLC4u1tChQ3XzzTdrz549GjVqlEtB6kLsdrtsNpvLAAAAAAAAAAAAcBcFIkkmk0kJCQnOgpDFYtGjjz6qgoIClZWV6auvvtKhQ4eUlJSkZ599Vv3799cTTzyhDh06KD09XQ8//LDmzZvnsua1116riRMnql27dmrXrt15z3zhhRfUrl07ZWdnq2PHjkpNTVV6evov5szKypLJZHKO6OjomvoJAAAAAAAAAACAF6FA9H+SkpJksVjkcDi0detWDR06VLGxsdq2bZtyc3PVrFkzxcTEqKioSL1793a5t3fv3jp48KDzFXWSlJiY+IvPKyoq0lVXXeVyrmfPnr94T0ZGhqxWq3MUFxe7uUsAAAAAAAAAAADJz9MBfivMZrNeeeUVFRYWyt/fX506dZLZbJbFYtGJEyeUlJTk1nrBwcE1ntFoNMpoNNb4ugAAAAAAAAAAwLvQQfR/zn2H6LnnnnMWg84ViCwWi8xmsyQpNjZWeXl5Lvfm5eWpQ4cO8vX1rfbzYmNjtXPnTpdzH3/88a/bBAAAAAAAAAAAQDXQQfR/GjVqpPj4eK1evVqLFy+WJPXt21cjRoxQeXm5s2g0ceJEde/eXU8++aRuu+02bd++XYsXL9aSJUvcet4DDzyg7OxsTZo0SaNGjVJ+fr5ycnIuKfuW2SkKDQ29pHsBAAAAAAAAAID3oYPovyQlJamiosLZLRQeHq64uDhFRkaqY8eOkqRu3brpzTff1Ouvv64rrrhC06dP16xZs5Senu7Ws1q2bKl169Zp/fr16tKli5YuXao5c+bU8I4AAAAAAAAAAADOZ3A4HA5Ph8ClsdlsMplMslqtdBABAAAAAAAAAODl3Kkb8Iq5eqDvtDXyNQZ6Okatyp+X5ukIAAAAAAAAAADUG7xiDgAAAAAAAAAAwMtQILqA1q1ba8GCBS7nEhISNHPmTEmSwWDQCy+8oBtuuEGBgYFq27at1q5d6zJ/3759uvbaaxUYGKiIiAjdd999Kisrc15PT0/X4MGDNX/+fEVFRSkiIkIPPfSQysvLa3t7AAAAAAAAAADAy1EgukRPPPGEhg0bpsLCQqWmpur2229XUVGRJOnUqVNKTk5Wo0aNtGvXLv3lL3/Rhx9+qIcffthljc2bN+vw4cPavHmzVq5cqZycHOXk5FT5TLvdLpvN5jIAAAAAAAAAAADcRYHoEg0fPlyjRo1Shw4d9OSTTyoxMVGLFi2SJL322mv66aeftGrVKl1xxRW69tprtXjxYr366qv65ptvnGs0atRIixcvVqdOnTRo0CDddNNN2rRpU5XPzMrKkslkco7o6Oha3ycAAAAAAAAAAKh/KBBdop49e553fK6DqKioSF26dFFwcLDzeu/evVVZWakDBw44z11++eXy9fV1HkdFRam0tLTKZ2ZkZMhqtTpHcXFxTW0HAAAAAAAAAAB4ET9PB/gt8vHxkcPhcDlXG98G8vf3dzk2GAyqrKyscr7RaJTRaKzxHAAAAAAAAAAAwLvQQXQBTZo0UUlJifPYZrPpyJEjLnM+/vjj845jY2MlSbGxsSosLNSpU6ec1/Py8uTj46OOHTvWYnIAAAAAAAAAAICLo0B0Addee61effVVbd26Vfv27dPdd9/t8io4SfrLX/6iV155RZ9//rlmzJihnTt36uGHH5YkpaamqkGDBrr77rv16aefavPmzRo7dqzuuusuNW3a1BNbAgAAAAAAAAAAcOIVcxeQkZGhI0eOaNCgQTKZTHryySfP6yDKzMzU66+/rjFjxigqKkpr1qxRXFycJCkoKEgffPCBHnnkEXXv3l1BQUEaNmyYnn322VrJu2V2ikJDQ2tlbQAAAAAAAAAAUP8YHP/7sR1clMFg0F//+lcNHjzYozlsNptMJpOsVisFIgAAAAAAAAAAvJw7dQM6iC7CbDYrNzdXklRQUKCEhIRq3ZOQkKAFCxbUbrj/03faGvkaA+vkWZ6SPy/N0xEAAAAAAAAAAKg3+AZRNYwePVolJSVau3atDAaDJGnIkCEyGAznDQAAAAAAAAAAgN86CkTVEBQUpMjISE2ZMkUlJSXO0aJFC82aNcvlHAAAAAAAAAAAwG8dBSI3hISEKDIy0jl8fX3VsGFDl3PnVFZWavLkyQoPD1dkZKRmzpzpstbJkyc1atQoNWnSRKGhobr22mtVWFhYxzsCAAAAAAAAAADeiAJRLVm5cqWCg4O1Y8cOzZ07V7NmzdLGjRud14cPH67S0lK9//77ys/PV7du3dS/f38dP368yjXtdrtsNpvLAAAAAAAAAAAAcBcFoloSHx+vGTNmKCYmRmlpaUpMTNSmTZskSdu2bdPOnTv1l7/8RYmJiYqJidH8+fMVFhamtWvXVrlmVlaWTCaTc0RHR9fVdgAAAAAAAAAAQD1CgaiWxMfHuxxHRUWptLRUklRYWKiysjJFREQoJCTEOY4cOaLDhw9XuWZGRoasVqtzFBcX1+oeAAAAAAAAAABA/eTn6QD1lb+/v8uxwWBQZWWlJKmsrExRUVGyWCzn3RcWFlblmkajUUajsSZjAgAAAAAAAAAAL0SByAO6deum//znP/Lz81Pr1q09HQcAAAAAAAAAAHgZCkQeMGDAAPXs2VODBw/W3Llz1aFDB3399df6+9//riFDhigxMdGt9bbMTlFoaGgtpQUAAAAAAAAAAPUN3yDyAIPBoPfee099+/bVPffcow4dOuj222/Xv//9bzVt2tTT8QAAAAAAAAAAQD1ncDgcDk+H+C0zm81KSEjQggULPB3lPDabTSaTSVarlQ4iAAAAAAAAAAC8nDt1A14xVw1LlizRyy+/rFOnTv3ivBkzZig9PV1t2rRRQUGBEhISXK7/b7HJbDYrNzf3vHXuv/9+LV26tNr5+k5bI19jYLXn/x7lz0vzdAQAAAAAAAAAAOoNCkQXsXr1av3444+SpICAAAUEBEiS3njjDU2fPl0HDhxwzg0JCdF3333n1vqjR4/WrFmzXM4FBQX9ytQAAAAAAAAAAABVo0B0Ec2bN7/geZPJJIPBoMjISJfz7haIgoKCzlsDAAAAAAAAAACgNlEg+h2x2+2y2+3OY5vN5sE0AAAAAAAAAADg98rH0wHqq169eikkJMRlbN269bx5S5YsOW/e6tWrL7hmVlaWTCaTc0RHR9f2NgAAAAAAAAAAQD1EB1EteeONNxQbG+tyLjU19bx5qampmjp1qsu5pk2bXnDNjIwMTZgwwXlss9koEgEAAAAAAAAAALdRIKol0dHRat++vcu5wMDA8+aZTKbz5lXFaDTKaDTWSD4AAAAAAAAAAOC9eMUcAAAAAAAAAACAl6GDyMNOnz6t//znPy7njEajGjVq5KFEAAAAAAAAAACgvqNA5GHLli3TsmXLXM4lJydrw4YN1V5jy+wUhYaG1nQ0AAAAAAAAAABQTxkcDofD0yFwaWw2m0wmk6xWKwUiAAAAAAAAAAC8nDt1AzqI6oG+09bI1xjo6Ri1Kn9emqcjAAAAAAAAAABQb/h4OkB99u233+rBBx9Uy5YtZTQaFRkZqeTkZOXl5Xk6GgAAAAAAAAAA8GJ0ENWiYcOG6cyZM1q5cqXatm2rb775Rps2bdL333/v6WgAAAAAAAAAAMCLUSCqJSdPntTWrVtlsViUlJQkSWrVqpV69OjhnHPs2DGNHTtWmzZtko+PjwYOHKhFixapadOmnooNAAAAAAAAAAC8AK+YqyUhISEKCQnR+vXrZbfbz7teWVmpW2+9VcePH1dubq42btyoL774QrfddluVa9rtdtlsNpcBAAAAAAAAAADgLgpEtcTPz085OTlauXKlwsLC1Lt3b/3xj3/U3r17JUmbNm3Svn379Nprr+nKK6/UVVddpVWrVik3N1e7du264JpZWVkymUzOER0dXZdbAgAAAAAAAAAA9QQFolo0bNgwff3113rnnXc0cOBAWSwWdevWTTk5OSoqKlJ0dLRLkScuLk5hYWEqKiq64HoZGRmyWq3OUVxcXFdbAQAAAAAAAAAA9QgFolrWoEEDXXfddXriiSf00UcfKT09XTNmzLiktYxGo0JDQ10GAAAAAAAAAACAuygQ1bG4uDidOnVKsbGxKi4udukC2r9/v06ePKm4uDgPJgQAAAAAAAAAAPWdweFwODwdoj76/vvvNXz4cI0cOVLx8fFq2LChdu/erbFjx+qmm27Syy+/rG7duqlhw4ZasGCBzp49qzFjxigkJEQWi6Vaz7DZbDKZTLJarXQTAQAAAAAAAADg5dypG/jVUSavExISoquuukrPPfecDh8+rPLyckVHR2v06NH64x//KIPBoLfffltjx45V37595ePjo4EDB2rRokWejg4AAAAAAAAAAOo5r+sgMpvNSkhI0IIFCzwd5VejgwgAAAAAAAAAAJxDB5GX6TttjXyNgZ6O4bb8eWmejgAAAAAAAAAAgFfy8XQAAAAAAAAAAAAA1C2vLBBVVlZq8uTJCg8PV2RkpGbOnOm89uyzz6pz584KDg5WdHS0xowZo7KyMuf1nJwchYWFaf369YqJiVGDBg2UnJys4uJi55yZM2cqISFBL774oqKjoxUUFKQRI0bIarVKkrZs2SJ/f3/95z//cck1fvx49enTp3Y3DwAAAAAAAAAAvJ5XFohWrlyp4OBg7dixQ3PnztWsWbO0ceNGSZKPj4+ef/55/etf/9LKlSv1z3/+U5MnT3a5//Tp03rqqae0atUq5eXl6eTJk7r99ttd5hw6dEhvvvmm/va3v2nDhg0qKCjQmDFjJEl9+/ZV27Zt9eqrrzrnl5eXa/Xq1Ro5cmSVue12u2w2m8sAAAAAAAAAAABwl1cWiOLj4zVjxgzFxMQoLS1NiYmJ2rRpk6Sfu3j69eun1q1b69prr9Xs2bP15ptvutxfXl6uxYsXq2fPnrryyiu1cuVKffTRR9q5c6dzzk8//aRVq1YpISFBffv21aJFi/T66687u4buvfderVixwjn/b3/7m3766SeNGDGiytxZWVkymUzOER0dXZM/CwAAAAAAAAAA8BJeWyD6b1FRUSotLZUkffjhh+rfv7+aN2+uhg0b6q677tL333+v06dPO+f7+fmpe/fuzuNOnTopLCxMRUVFznMtW7ZU8+bNncc9e/ZUZWWlDhw4IElKT0/XoUOH9PHHH0v6+dV1I0aMUHBwcJW5MzIyZLVaneO/X2sHAAAAAAAAAABQXV5ZIPL393c5NhgMqqys1NGjRzVo0CDFx8dr3bp1ys/P15/+9CdJ0pkzZ2o0w2WXXaabb75ZK1as0DfffKP333//F18vJ0lGo1GhoaEuAwAAAAAAAAAAwF1+ng7wW5Kfn6/KykplZ2fLx+fn2tn/vl5Oks6ePavdu3erR48ekqQDBw7o5MmTio2Ndc45duyYvv76azVr1kyS9PHHH8vHx0cdO3Z0zhk1apRSUlLUokULtWvXTr17967N7QEAAAAAAAAAAEjy0g6iqrRv317l5eVatGiRvvjiC7366qtaunTpefP8/f01duxY7dixQ/n5+UpPT9fVV1/tLBhJUoMGDXT33XersLBQW7du1bhx4zRixAhFRkY65yQnJys0NFSzZ8/WPffcUyd7BAAAAAAAAAAAoIPov3Tp0kXPPvusnnnmGWVkZKhv377KyspSWlqay7ygoCA9/vjjuuOOO/TVV1+pT58+Wr58ucuc9u3ba+jQobrxxht1/PhxDRo0SEuWLHGZ4+Pjo/T0dM2ZM+e8Z7hjy+wUXjcHAAAAAAAAAACqzeBwOByeDvF7kpOTo/Hjx+vkyZNVzpk5c6bWr1+vPXv2XHS9e++9V99++63eeecdt7PYbDaZTCZZrVYKRAAAAAAAAAAAeDl36gZ0EHmI1WrVvn379Nprr11Scei/9Z22Rr7GwBpKVnfy51161xQAAAAAAAAAALh0fIOoDqWnp2vw4MGSpFtvvVXXX3+9HnjgAV133XWeDQYAAAAAAAAAALwKr5irQ+np6Tp58qTWr19fI+udaxXrMnYpHUQAAAAAAAAAAHg5XjH3O2A2mxUfH68GDRro5ZdfVkBAgB544AHNnDnT09EAAAAAAAAAAEA9xyvmPGjlypUKDg7Wjh07NHfuXM2aNUsbN26scr7dbpfNZnMZAAAAAAAAAAAA7qJA5EHx8fGaMWOGYmJilJaWpsTERG3atKnK+VlZWTKZTM4RHR1dh2kBAAAAAAAAAEB94fYr5ioqKpSTk6NNmzaptLRUlZWVLtf/+c9/1li4+i4+Pt7lOCoqSqWlpVXOz8jI0IQJE5zHNpuNIhEAAAAAAAAAAHCb2wWiRx55RDk5Obrpppt0xRVXyGAw1EYur+Dv7+9ybDAYziu4/Tej0Sij0VjbsQAAAAAAAAAAQD3ndoHo9ddf15tvvqkbb7yxNvIAAAAAAAAAAACglrn9DaKAgAC1b9++NrIAAAAAAAAAAACgDrjdQTRx4kQtXLhQixcv5vVyvxFbZqcoNDTU0zEAAAAAAAAAAMDvhMHhcDjcuWHIkCHavHmzwsPDdfnll5/3HZ233nqrRgOiajabTSaTSVarlQIRAAAAAAAAAABezp26gdsdRGFhYRoyZMglh/sts1gs6tevn06cOKGwsDBPx6m2vtPWyNcY6OkYbsufl+bpCAAAAAAAAAAAeCW3C0QrVqyojRweYTablZCQoAULFng6CgAAAAAAAAAAQJ3xuZSbzp49qw8//FAvvviifvjhB0nS119/rbKyshoNV1+Ul5d7OgIAAAAAAAAAAICT2wWif//73+rcubNuvfVWPfTQQ/r2228lSc8884wee+yxGg9YW9LT05Wbm6uFCxfKYDDIYDDo6NGjkqT8/HwlJiYqKChIvXr10oEDB1zuffvtt9WtWzc1aNBAbdu2VWZmps6ePeu8bjAY9MILL+iWW25RcHCwnnrqqWrddzF2u102m81lAAAAAAAAAAAAuMvtAtEjjzyixMREnThxQoGB//+7N0OGDNGmTZtqNFxtWrhwoXr27KnRo0erpKREJSUlio6OliRNnTpV2dnZ2r17t/z8/DRy5EjnfVu3blVaWpoeeeQR7d+/Xy+++KJycnKcRaBzZs6cqSFDhmjfvn0aOXJkte/7JVlZWTKZTM5xLi8AAAAAAAAAAIA7DA6Hw+HODREREfroo4/UsWNHNWzYUIWFhWrbtq2OHj2quLg4nT59uray1rj//QaRxWJRv3799OGHH6p///6SpPfee0833XSTfvzxRzVo0EADBgxQ//79lZGR4Vznz3/+syZPnqyvv/5a0s8dROPHj9dzzz3nnFOd+y7GbrfLbrc7j202m6Kjo9Vl7FL5GgN/4c7fpvx5aZ6OAAAAAAAAAABAvWGz2WQymWS1WhUaGvqLc/3cXbyyslIVFRXnnf/yyy/VsGFDd5f7TYqPj3f+HRUVJUkqLS1Vy5YtVVhYqLy8PJfOn4qKCv300086ffq0goKCJEmJiYkua1b3vl9iNBplNBp/1d4AAAAAAAAAAADcLhBdf/31WrBggV566SVJP3fLlJWVacaMGbrxxhtrPKAn+Pv7O/82GAySfi6MSVJZWZkyMzM1dOjQ8+5r0KCB8+/g4GCXa9W9DwAAAAAAAAAAoLa5XSDKzs5WcnKy4uLi9NNPP+mOO+7QwYMH1bhxY61Zs6Y2MtaagICAC3ZD/ZJu3brpwIEDat++fZ3cBwAAAAAAAAAAUNPcLhC1aNFChYWFeuONN1RYWKiysjLde++9Sk1NVWDg7+s7OK1bt9aOHTt09OhRhYSEOLuEfsn06dM1aNAgtWzZUn/4wx/k4+OjwsJCffrpp5o9e3aN31cdW2anXPRdggAAAAAAAAAAAOf4uHvDmjVr5Ofnp9TUVM2dO1dLlizRqFGjFBgYqEmTJtVGxlrz2GOPydfXV3FxcWrSpImOHTt20XuSk5P17rvv6h//+Ie6d++uq6++Ws8995xatWr1q+9LT0+X2Wz+tdsCAAAAAAAAAAD4RQaHw+Fw54awsDCtWbNGN9xwg8v5Rx99VK+//rpKSkpqNKA3SUpKUr9+/TRz5sxqzbfZbDKZTOoydql8jb+v7i1Jyp+X5ukIAAAAAAAAAADUG+fqBlar9aJvHnO7g2j16tVKSUnRtm3bnOfGjh2rN998U5s3b3Y/LSRJVqtVhw8f1mOPPebpKAAAAAAAAAAAoJ5z+xtEN910k5YsWaJbbrlFGzdu1PLly/X2229r8+bN6tChQ21k9Aomk0lffvmlp2MAAAAAAAAAAAAv4HYHkSTdcccdmj17tnr37q2//e1vys3NpTh0ARs2bNA111yjsLAwRUREaNCgQTp8+LAk6ejRozIYDHrrrbfUr18/BQUFqUuXLtq+fbuHUwMAAAAAAAAAgPquWh1EEyZMuOD5Jk2aqFu3blqyZInz3LPPPlszyeqBU6dOacKECYqPj1dZWZmmT5+uIUOGaM+ePc45U6dO1fz58xUTE6OpU6cqJSVFhw4dkp/f+f8au90uu93uPLbZbHWxDQAAAAAAAAAAUM9Uq0BUUFBwwfPt27eXzWZzXjcYDDWXrB4YNmyYy/Err7yiJk2aaP/+/QoJCZEkPfbYY7rpppskSZmZmbr88st16NAhderU6bz1srKylJmZWfvBAQAAAAAAAABAvVatAtHmzZtrO0e9dPDgQU2fPl07duzQd999p8rKSknSsWPHFBcXJ0mKj493zo+KipIklZaWXrBAlJGR4dLNZbPZFB0dXZtbAAAAAAAAAAAA9VC1CkRV+fLLLyVJLVq0qJEw9c3NN9+sVq1aadmyZWrWrJkqKyt1xRVX6MyZM845/v7+zr/PdWCdKyT9L6PRKKPRWLuhAQAAAAAAAABAvefj7g2VlZWaNWuWTCaTWrVqpVatWiksLExPPvlklYUNb/T999/rwIEDmjZtmvr376/Y2FidOHHC07EAAAAAAAAAAADc7yCaOnWqli9frqefflq9e/eWJG3btk0zZ87UTz/9pKeeeqrGQ/4eNWrUSBEREXrppZcUFRWlY8eOacqUKZ6OBQAAAAAAAAAA4H6BaOXKlXr55Zd1yy23OM/Fx8erefPmGjNmDAWi/+Pj46PXX39d48aN0xVXXKGOHTvq+eefl9lsrvFnbZmdotDQ0BpfFwAAAAAAAAAA1E9uF4iOHz+uTp06nXe+U6dOOn78eI2Eqi8GDBig/fv3u5xzOBwX/FuSwsLCzjsHAAAAAAAAAABQ09wuEHXp0kWLFy/W888/73J+8eLF6tKlS40FQ/X1nbZGvsZAT8dwW/68NE9HAAAAAAAAAADAK7ldIJo7d65uuukmffjhh+rZs6ckafv27SouLtZ7771X4wF/a8xmsxISErRgwQJPRwEAAAAAAAAAALgkPu7e0KZNG33++ecaMmSITp48qZMnT2ro0KE6cOCAWrVqVRsZ66UzZ854OgIAAAAAAAAAAPBSl1Qg8vPz01NPPaV169Zp3bp1mj17toxGo9q0aVMbGX+Vd999V2FhYaqoqJAk7dmzRwaDQVOmTHHOGTVqlO688059//33SklJUfPmzRUUFKTOnTtrzZo1znnp6enKzc3VwoULZTAYZDAYdPToUUnSp59+qhtuuEEhISFq2rSp7rrrLn333XfOe81msx5++GGNHz9ejRs3VnJyshwOh2bOnKmWLVvKaDSqWbNmGjduXN38MAAAAAAAAAAAwGu5XSByOBwXPF9WVqYGDRr86kA1rU+fPvrhhx9UUFAgScrNzVXjxo1lsVicc3Jzc2U2m/XTTz/pyiuv1N///nd9+umnuu+++3TXXXdp586dkqSFCxeqZ8+eGj16tEpKSlRSUqLo6GidPHlS1157rbp27ardu3drw4YN+uabbzRixAiXLCtXrlRAQIDy8vK0dOlSrVu3Ts8995xefPFFHTx4UOvXr1fnzp2r3IvdbpfNZnMZAAAAAAAAAAAA7qr2N4gmTJggSTIYDJo+fbqCgoKc1yoqKrRjxw4lJCTUeMBfy2QyKSEhQRaLRYmJibJYLHr00UeVmZmpsrIyWa1WHTp0SElJSWrevLkee+wx571jx47VBx98oDfffFM9evSQyWRSQECAgoKCFBkZ6Zy3ePFide3aVXPmzHGee+WVVxQdHa3PP/9cHTp0kCTFxMRo7ty5zjl///vfFRkZqQEDBsjf318tW7ZUjx49qtxLVlaWMjMza/LnAQAAAAAAAAAAXqjaHUQFBQUqKCiQw+HQvn37nMcFBQX67LPP1KVLF+Xk5NRi1EuXlJQki8Uih8OhrVu3aujQoYqNjdW2bduUm5urZs2aKSYmRhUVFXryySfVuXNnhYeHKyQkRB988IGOHTv2i+sXFhZq8+bNCgkJcY5OnTpJkg4fPuycd+WVV7rcN3z4cP34449q27atRo8erb/+9a86e/Zslc/JyMiQ1Wp1juLi4l/xqwAAAAAAAAAAAG9V7Q6izZs3S5LuueceLVy4UKGhobUWqqaZzWa98sorKiwslL+/vzp16iSz2SyLxaITJ04oKSlJkjRv3jwtXLhQCxYsUOfOnRUcHKzx48frzJkzv7h+WVmZbr75Zj3zzDPnXYuKinL+HRwc7HItOjpaBw4c0IcffqiNGzdqzJgxmjdvnnJzc+Xv73/eWkajUUaj8VJ+AgAAAAAAAAAAAKdqF4jOWbFiRW3kqFXnvkP03HPPOYtBZrNZTz/9tE6cOKGJEydKkvLy8nTrrbfqzjvvlCRVVlbq888/V1xcnHOtgIAAVVRUuKzfrVs3rVu3Tq1bt5afn3s/aWBgoG6++WbdfPPNeuihh9SpUyft27dP3bp1+zVbBgAAAAAAAAAAqJLbBaLfo0aNGik+Pl6rV6/W4sWLJUl9+/bViBEjVF5e7iwaxcTEaO3atfroo4/UqFEjPfvss/rmm29cCkStW7fWjh07dPToUYWEhCg8PFwPPfSQli1bppSUFE2ePFnh4eE6dOiQXn/9db388svy9fW9YK6cnBxVVFToqquuUlBQkP785z8rMDBQrVq1cmt/W2an/K46ugAAAAAAAAAAgGdV+xtEv3dJSUmqqKiQ2WyWJIWHhysuLk6RkZHq2LGjJGnatGnq1q2bkpOTZTabFRkZqcGDB7us89hjj8nX11dxcXFq0qSJjh07pmbNmikvL08VFRW6/vrr1blzZ40fP15hYWHy8an6Jw4LC9OyZcvUu3dvxcfH68MPP9Tf/vY3RURE1NbPAAAAAAAAAAAAIIPD4XB4OgQujc1mk8lkUpexS+VrDPR0HLflz0vzdAQAAAAAAAAAAOqNc3UDq9V60TePeU0HEQAAAAAAAAAAAH5GgcgDzpw54+kIAAAAAAAAAADAi1Eg+h9ms1ljx47V+PHj1ahRIzVt2lTLli3TqVOndM8996hhw4Zq37693n//fec9ubm56tGjh4xGo6KiojRlyhSdPXvWZc2HH35Y48ePV+PGjZWcnCxJ+vTTT3XDDTcoJCRETZs21V133aXvvvuuzvcMAAAAAAAAAAC8CwWiC1i5cqUaN26snTt3auzYsXrwwQc1fPhw9erVS5988omuv/563XXXXTp9+rS++uor3XjjjerevbsKCwv1wgsvaPny5Zo9e/Z5awYEBCgvL09Lly7VyZMnde2116pr167avXu3NmzYoG+++UYjRoyoMpfdbpfNZnMZAAAAAAAAAAAA7jI4HA6Hp0P8lpjNZlVUVGjr1q2SpIqKCplMJg0dOlSrVq2SJP3nP/9RVFSUtm/frr/97W9at26dioqKZDAYJElLlizR448/LqvVKh8fH5nNZtlsNn3yySfO58yePVtbt27VBx984Dz35ZdfKjo6WgcOHFCHDh3OyzZz5kxlZmaed77L2KXyNQbW6O9QF/LnpXk6AgAAAAAAAAAA9YbNZpPJZJLValVoaOgvzqWD6ALi4+Odf/v6+ioiIkKdO3d2nmvatKkkqbS0VEVFRerZs6ezOCRJvXv3VllZmb788kvnuSuvvNLlGYWFhdq8ebNCQkKco1OnTpKkw4cPXzBXRkaGrFarcxQXF//6zQIAAAAAAAAAAK/j5+kAv0X+/v4uxwaDweXcuWJQZWVltdcMDg52OS4rK9PNN9+sZ5555ry5UVFRF1zDaDTKaDRW+5kAAAAAAAAAAAAXQoHoV4qNjdW6devkcDichaO8vDw1bNhQLVq0qPK+bt26ad26dWrdurX8/Pg3AAAAAAAAAACAusMr5n6lMWPGqLi4WGPHjtVnn32mt99+WzNmzNCECRPk41P1z/vQQw/p+PHjSklJ0a5du3T48GF98MEHuueee1RRUVGHOwAAAAAAAAAAAN6G1pVfqXnz5nrvvfc0adIkdenSReHh4br33ns1bdq0X7yvWbNmysvL0+OPP67rr79edrtdrVq10sCBA3+xsHQhW2anXPRjUwAAAAAAAAAAAOcYHA6Hw9MhcGlsNptMJpOsVisFIgAAAAAAAAAAvJw7dQM6iC7CbDYrISFBCxYs8HSUKvWdtka+xkBPx3Bb/rw0T0cAAAAAAAAAAMAr8Q0iAAAAAAAAAAAAL0OBCAAAAAAAAAAAwMtQIPovp06dUlpamkJCQhQVFaXs7GyX6ydOnFBaWpoaNWqkoKAg3XDDDTp48KAkyeFwqEmTJlq7dq1zfkJCgqKiopzH27Ztk9Fo1OnTpyVJBoNBL7/8soYMGaKgoCDFxMTonXfeqYOdAgAAAAAAAAAAb0aB6L9MmjRJubm5evvtt/WPf/xDFotFn3zyifN6enq6du/erXfeeUfbt2+Xw+HQjTfeqPLychkMBvXt21cWi0XSz8WkoqIi/fjjj/rss88kSbm5uerevbuCgoKca2ZmZmrEiBHau3evbrzxRqWmpur48eMXzGe322Wz2VwGAAAAAAAAAACAuygQ/Z+ysjItX75c8+fPV//+/dW5c2etXLlSZ8+elSQdPHhQ77zzjl5++WX16dNHXbp00erVq/XVV19p/fr1kiSz2ewsEG3ZskVdu3Z1OWexWJSUlOTy3PT0dKWkpKh9+/aaM2eOysrKtHPnzgtmzMrKkslkco7o6Oha+S0AAAAAAAAAAED9RoHo/xw+fFhnzpzRVVdd5TwXHh6ujh07SpKKiork5+fncj0iIkIdO3ZUUVGRJCkpKUn79+/Xt99+q9zcXJnNZmeBqLy8XB999JHMZrPLc+Pj451/BwcHKzQ0VKWlpRfMmJGRIavV6hzFxcU1tX0AAAAAAAAAAOBFKBDVoM6dOys8PFy5ubkuBaLc3Fzt2rVL5eXl6tWrl8s9/v7+LscGg0GVlZUXXN9oNCo0NNRlAAAAAAAAAAAAuIsC0f9p166d/P39tWPHDue5EydO6PPPP5ckxcbG6uzZsy7Xv//+ex04cEBxcXGSfi7u9OnTR2+//bb+9a9/6ZprrlF8fLzsdrtefPFFJSYmKjg4uG43BgAAAAAAAAAA8D/8PB3gtyIkJET33nuvJk2apIiICF122WWaOnWqfHx+rqHFxMTo1ltv1ejRo/Xiiy+qYcOGmjJlipo3b65bb73VuY7ZbNbEiROVmJiokJAQSVLfvn21evVqTZo0qVayb5mdQjcRAAAAAAAAAACoNjqI/su8efPUp08f3XzzzRowYICuueYaXXnllc7rK1as0JVXXqlBgwapZ8+ecjgceu+991xeE5eUlKSKigqXbw2ZzebzzgEAAAAAAAAAAHiKweFwODwdAj9LT0/XyZMntX79+mrNt9lsMplMslqtdBABAAAAAAAAAODl3Kkb8Iq5eqDvtDXyNQZ6Oobb8ueleToCAAAAAAAAAABeiVfMAQAAAAAAAAAAeJl6USBau3atOnfurMDAQEVERGjAgAE6deqUJOnll19WbGysGjRooE6dOmnJkiUu9xYXF2vEiBEKCwtTeHi4br31Vh09etR5PT09XYMHD9acOXPUtGlThYWFadasWTp79qwmTZqk8PBwtWjRQitWrHBr3YqKCk2YMEFhYWGKiIjQ5MmTxdv+AAAAAAAAAABAXfjdF4hKSkqUkpKikSNHqqioSBaLRUOHDpXD4dDq1as1ffp0PfXUUyoqKtKcOXP0xBNPaOXKlZKk8vJyJScnq2HDhtq6davy8vIUEhKigQMH6syZM85n/POf/9TXX3+tLVu26Nlnn9WMGTM0aNAgNWrUSDt27NADDzyg+++/X19++WW1183OzlZOTo5eeeUVbdu2TcePH9df//rXX9yr3W6XzWZzGQAAAAAAAAAAAO4yOH7nbSuffPKJrrzySh09elStWrVyuda+fXs9+eSTSklJcZ6bPXu23nvvPX300Uf685//rNmzZ6uoqEgGg0GSdObMGYWFhWn9+vW6/vrrlZ6eLovFoi+++EI+Pj/X0zp16qTLLrtMW7ZskfRzN5DJZNLLL7+s22+/vVrrNmvWTI8++qgmTZokSTp79qzatGmjK6+8UuvXr7/gXmfOnKnMzMzzzncZu5RvEAEAAAAAAAAA4OVsNptMJpOsVqtCQ0N/ca5fHWWqNV26dFH//v3VuXNnJScn6/rrr9cf/vAHBQQE6PDhw7r33ns1evRo5/yzZ8/KZDJJkgoLC3Xo0CE1bNjQZc2ffvpJhw8fdh5ffvnlzuKQJDVt2lRXXHGF89jX11cREREqLS2t1rpWq1UlJSW66qqrnNf8/PyUmJj4i6+Zy8jI0IQJE5zHNptN0dHR1fqdAAAAAAAAAAAAzvndF4h8fX21ceNGffTRR/rHP/6hRYsWaerUqfrb3/4mSVq2bJlLIebcPZJUVlamK6+8UqtXrz5v3SZNmjj/9vf3d7lmMBgueK6ystKtdd1lNBplNBov+X4AAAAAAAAAAACpHhSIpJ+LM71791bv3r01ffp0tWrVSnl5eWrWrJm++OILpaamXvC+bt266Y033tBll1120VYrd1Rn3aioKO3YsUN9+/aV9HNnU35+vrp161ZjOQAAAAAAAAAAAC7E5+JTftt27NihOXPmaPfu3Tp27Jjeeustffvtt4qNjVVmZqaysrL0/PPP6/PPP9e+ffu0YsUKPfvss5Kk1NRUNW7cWLfeequ2bt2qI0eOyGKxaNy4cfryyy8vOVN11n3kkUf09NNPa/369frss880ZswYnTx5siZ+EgAAAAAAAAAAgF/0u+8gCg0N1ZYtW7RgwQLZbDa1atVK2dnZuuGGGyRJQUFBmjdvniZNmqTg4GB17txZ48ePd17bsmWLHn/8cQ0dOlQ//PCDmjdvrv79+/+qjqLqrDtx4kSVlJTo7rvvlo+Pj0aOHKkhQ4bIarW6/bwts1NqtAMKAAAAAAAAAADUbwaHw+HwdAhcGpvNJpPJJKvVSoEIAAAAAAAAAAAv507d4HffQQSp77Q18jUGejqG2/LnpXk6AgAAAAAAAAAAXul3/w0iAAAAAAAAAAAAuIcCEQAAAAAAAAAAgJehQFTL1q5dq86dOyswMFAREREaMGCATp06pcrKSs2aNUstWrSQ0WhUQkKCNmzY4Om4AAAAAAAAAADAC1AgqkUlJSVKSUnRyJEjVVRUJIvFoqFDh8rhcGjhwoXKzs7W/PnztXfvXiUnJ+uWW27RwYMHq1zPbrfLZrO5DAAAAAAAAAAAAHcZHA6Hw9Mh6qtPPvlEV155pY4ePapWrVq5XGvevLkeeugh/fGPf3Se69Gjh7p3764//elPF1xv5syZyszMPO98l7FL5WsMrNnwdSB/XpqnIwAAAAAAAAAAUG/YbDaZTCZZrVaFhob+4lw6iGpRly5d1L9/f3Xu3FnDhw/XsmXLdOLECdlsNn399dfq3bu3y/zevXurqKioyvUyMjJktVqdo7i4uLa3AAAAAAAAAAAA6iEKRLXI19dXGzdu1Pvvv6+4uDgtWrRIHTt21JEjRy5pPaPRqNDQUJcBAAAAAAAAAADgLgpEtcxgMKh3797KzMxUQUGBAgICtGnTJjVr1kx5eXkuc/Py8hQXF+ehpAAAAAAAAAAAwFv4eTpAfbZjxw5t2rRJ119/vS677DLt2LFD3377rWJjYzVp0iTNmDFD7dq1U0JCglasWKE9e/Zo9erVbj9ny+wUuokAAAAAAAAAAEC1USCqRaGhodqyZYsWLFggm82mVq1aKTs7WzfccIOSk5NltVo1ceJElZaWKi4uTu+8845iYmI8HRsAAAAAAAAAANRzBofD4fB0CFwam80mk8kkq9VKBxEAAAAAAAAAAF7OnboBHUT1QN9pa+RrDPR0DLflz0vzdAQAAAAAAAAAALySj6cDAAAAAAAAAAAAoG5RIHKD3W7XuHHjdNlll6lBgwa65pprtGvXLklSYmKi5s+f75w7ePBg+fv7q6ysTJL05ZdfymAw6NChQ5Kk1q1ba86cORo5cqQaNmyoli1b6qWXXqr7TQEAAAAAAAAAAK9DgcgNkydP1rp167Ry5Up98sknat++vZKTk3X8+HElJSXJYrFIkhwOh7Zu3aqwsDBt27ZNkpSbm6vmzZurffv2zvWys7OVmJiogoICjRkzRg8++KAOHDhQ5fPtdrtsNpvLAAAAAAAAAAAAcBcFomo6deqUXnjhBc2bN0833HCD4uLitGzZMgUGBmr58uUym83atm2bKioqtHfvXgUEBCg1NdVZNLJYLEpKSnJZ88Ybb9SYMWPUvn17Pf7442rcuLE2b95cZYasrCyZTCbniI6Ors0tAwAAAAAAAACAeooCUTUdPnxY5eXl6t27t/Ocv7+/evTooaKiIvXp00c//PCDCgoKlJubq6SkJJnNZmeBKDc3V2az2WXN+Ph4598Gg0GRkZEqLS2tMkNGRoasVqtzFBcX1+geAQAAAAAAAACAd/DzdID6IiwsTF26dJHFYtH27dt13XXXqW/fvrrtttv0+eef6+DBg+d1EPn7+7scGwwGVVZWVvkMo9Eoo9FYK/kBAAAAAAAAAID3oIOomtq1a6eAgADl5eU5z5WXl2vXrl2Ki4uTJCUlJWnz5s3asmWLzGazwsPDFRsbq6eeekpRUVHq0KGDp+IDAAAAAAAAAAA4USCqpuDgYD344IOaNGmSNmzYoP3792v06NE6ffq07r33XkmS2WzWBx98ID8/P3Xq1Ml5bvXq1ed1DwEAAAAAAAAAAHgKr5hzw9NPP63Kykrddddd+uGHH5SYmKgPPvhAjRo1kiT16dNHlZWVLsUgs9mshQsXnvf9oZq0ZXaKQkNDa219AAAAAAAAAABQvxgcDofD0yFwaWw2m0wmk6xWKwUiAAAAAAAAAAC8nDt1AzqI6oG+09bI1xjo6Rhuy5+X5ukIAAAAAAAAAAB4Jb5B5GHbt2+Xr6+vbrrpJk9HAQAAAAAAAAAAXoICkYctX75cY8eO1ZYtW/T11197Og4AAAAAAAAAAPACFIg8qKysTG+88YYefPBB3XTTTcrJyfF0JAAAAAAAAAAA4AUoEHnQm2++qU6dOqljx46688479corr8jhcFQ53263y2azuQwAAAAAAAAAAAB3USDyoOXLl+vOO++UJA0cOFBWq1W5ublVzs/KypLJZHKO6OjouooKAAAAAAAAAADqEQpEHnLgwAHt3LlTKSkpkiQ/Pz/ddtttWr58eZX3ZGRkyGq1OkdxcXFdxQUAAAAAAAAAAPWIn6cDeKvly5fr7NmzatasmfOcw+GQ0WjU4sWLZTKZzrvHaDTKaDTWZUwAAAAAAAAAAFAP0UHkAWfPntWqVauUnZ2tPXv2OEdhYaGaNWumNWvWeDoiAAAAAAAAAACoxwwOh8Ph6RDeZv369brttttUWlp6XqfQ448/rn/+85/atWvXRdex2WwymUyyWq0KDQ2trbgAAAAAAAAAAOB3wJ26AR1EHrB8+XINGDDggq+RGzZsmHbv3q29e/d6IBkAAAAAAAAAAPAGdBD9jtFBBAAAAAAAAAAAznGnbuBXR5lQi/pOWyNfY6CnY7gtf16apyMAAAAAAAAAAOCVeMUcAAAAAAAAAACAl6FA5AEVFRWqrKz0dAwAAAAAAAAAAOClvL5AtGrVKkVERMhut7ucHzx4sO666y5J0ttvv61u3bqpQYMGatu2rTIzM3X27Fnn3GeffVadO3dWcHCwoqOjNWbMGJWVlTmv5+TkKCwsTO+8847i4uJkNBp17NgxWSwW9ejRQ8HBwQoLC1Pv3r3173//u8qsdrtdNpvNZQAAAAAAAAAAALjL6wtEw4cPV0VFhd555x3nudLSUv3973/XyJEjtXXrVqWlpemRRx7R/v379eKLLyonJ0dPPfWUc76Pj4+ef/55/etf/9LKlSv1z3/+U5MnT3Z5zunTp/XMM8/o5Zdf1r/+9S+Fh4dr8ODBSkpK0t69e7V9+3bdd999MhgMVWbNysqSyWRyjujo6Jr/QQAAAAAAAAAAQL1ncDgcDk+H8LQxY8bo6NGjeu+99yT93BH0pz/9SYcOHdJ1112n/v37KyMjwzn/z3/+syZPnqyvv/76guutXbtWDzzwgL777jtJP3cQ3XPPPdqzZ4+6dOkiSTp+/LgiIiJksViUlJRUrZx2u92l08lmsyk6Olpdxi6VrzHwkvbuSfnz0jwdAQAAAAAAAACAesNms8lkMslqtSo0NPQX5/rVUabftNGjR6t79+766quv1Lx5c+Xk5Cg9PV0Gg0GFhYXKy8tz6RiqqKjQTz/9pNOnTysoKEgffvihsrKy9Nlnn8lms+ns2bMu1yUpICBA8fHxzjXCw8OVnp6u5ORkXXfddRowYIBGjBihqKioKnMajUYZjcba+yEAAAAAAAAAAIBX8PpXzElS165d1aVLF61atUr5+fn617/+pfT0dElSWVmZMjMztWfPHufYt2+fDh48qAYNGujo0aMaNGiQ4uPjtW7dOuXn5+tPf/qTJOnMmTPOZwQGBp73+rgVK1Zo+/bt6tWrl9544w116NBBH3/8cZ3tGwAAAAAAAAAAeCc6iP7PqFGjtGDBAn311VcaMGCA8/s+3bp104EDB9S+ffsL3pefn6/KykplZ2fLx+fnetubb75Z7ed27dpVXbt2VUZGhnr27KnXXntNV1999a/fEAAAAAAAAAAAQBUoEP2fO+64Q4899piWLVumVatWOc9Pnz5dgwYNUsuWLfWHP/xBPj4+Kiws1KeffqrZs2erffv2Ki8v16JFi3TzzTcrLy9PS5cuvejzjhw5opdeekm33HKLmjVrpgMHDujgwYNKS3P/uzxbZqdc9F2CAAAAAAAAAAAA5/CKuf9jMpk0bNgwhYSEaPDgwc7zycnJevfdd/WPf/xD3bt319VXX63nnntOrVq1kiR16dJFzz77rJ555hldccUVWr16tbKysi76vKCgIH322WcaNmyYOnTooPvuu08PPfSQ7r///traIgAAAAAAAAAAgCTJ4HA4HJ4O8VvRv39/XX755Xr++efr5Hlms1kJCQlasGCBTp8+rbvuuksbN27UDz/8oBMnTigsLOwX77fZbDKZTOoydql8jYF1krkm5c9zv1sKAAAAAAAAAABc2Lm6gdVqveibx3jFnKQTJ07IYrHIYrFoyZIldfbct956S/7+/pKklStXauvWrfroo4/UuHFjmUymOssBAAAAAAAAAAC8CwUiSV27dtWJEyf0zDPPqGPHjnX23PDwcOffhw8fVmxsrK644oo6ez4AAAAAAAAAAPBOFIgkHT161CPPPfeKuT179ig3N1eSZDAYlJSUJIvF4pFMAAAAAAAAAACg/qNA9Bvw1ltvacqUKfr000/11ltvKSAg4ILz7Ha77Ha789hms9VVRAAAAAAAAAAAUI/4eDoAfn7VXFBQkAICAhQZGeny6rn/lpWVJZPJ5BzR0dF1nBQAAAAAAAAAANQHFIh+RzIyMmS1Wp2juLjY05EAAAAAAAAAAMDvEK+Y+x0xGo0yGo2ejgEAAAAAAAAAAH7n6CACAAAAAAAAAADwMhSIAAAAAAAAAAAAvAyvmKsHtsxOUWhoqKdjAAAAAAAAAACA3wmDw+FweDoELo3NZpPJZJLVaqVABAAAAAAAAACAl3OnbkAH0QWYzWYlJCRowYIFno5SLX2nrZGvMdDTMdyWPy/N0xEAAAAAAAAAAPBKfIMIAAAAAAAAAADAy1AgAgAAAAAAAAAA8DIUiKpw9uxZPfzwwzKZTGrcuLGeeOIJnftck91u12OPPabmzZsrODhYV111lSwWi8v927ZtU58+fRQYGKjo6GiNGzdOp06dcl5v3bq15syZo5EjR6phw4Zq2bKlXnrppV/MZLfbZbPZXAYAAAAAAAAAAIC7KBBVYeXKlfLz89POnTu1cOFCPfvss3r55ZclSQ8//LC2b9+u119/XXv37tXw4cM1cOBAHTx4UJJ0+PBhDRw4UMOGDdPevXv1xhtvaNu2bXr44YddnpGdna3ExEQVFBRozJgxevDBB3XgwIEqM2VlZclkMjlHdHR07f0AAAAAAAAAAACg3jI4zrXFwMlsNqu0tFT/+te/ZDAYJElTpkzRO++8ow0bNqht27Y6duyYmjVr5rxnwIAB6tGjh+bMmaNRo0bJ19dXL774ovP6tm3blJSUpFOnTqlBgwZq3bq1+vTpo1dffVWS5HA4FBkZqczMTD3wwAMXzGW322W3253HNptN0dHR6jJ2qXyNgbXxU9Sq/Hlpno4AAAAAAAAAAEC9YbPZZDKZZLVaFRoa+otz/eoo0+/O1Vdf7SwOSVLPnj2VnZ2tffv2qaKiQh06dHCZb7fbFRERIUkqLCzU3r17tXr1aud1h8OhyspKHTlyRLGxsZKk+Ph453WDwaDIyEiVlpZWmcloNMpoNNbI/gAAAAAAAAAAgPeiQOSmsrIy+fr6Kj8/X76+vi7XQkJCnHPuv/9+jRs37rz7W7Zs6fzb39/f5ZrBYFBlZWUtpAYAAAAAAAAAAPj/KBBVYceOHS7HH3/8sWJiYtS1a1dVVFSotLRUffr0ueC93bp10/79+9W+ffu6iAoAAAAAAAAAAOAWCkRVOHbsmCZMmKD7779fn3zyiRYtWqTs7Gx16NBBqampSktLU3Z2trp27apvv/1WmzZtUnx8vG666SY9/vjjuvrqq/Xwww9r1KhRCg4O1v79+7Vx40YtXry4xrNumZ1y0XcJAgAAAAAAAAAAnEOBqAppaWn68ccf1aNHD/n6+uqRRx7RfffdJ0lasWKFZs+erYkTJ+qrr75S48aNdfXVV2vQoEGSfv62UG5urqZOnao+ffrI4XCoXbt2uu222zy5JQAAAAAAAAAAAEmSweFwODwd4rfIbDYrISFBCxYsUOvWrTV+/HiNHz++1p5nsVjUr18/nThxQmFhYdW6x2azyWQyqcvYpfI1BtZattqSPy/N0xEAAAAAAAAAAKg3ztUNrFbrRd88RgdRNezatUvBwcGejgEAAAAAAAAAAFAjKBBVQ5MmTTwdAQAAAAAAAAAAoMb4eDrA70Hr1q21YMECSdIdd9xx3reEysvL1bhxY61atUqSVFlZqaysLLVp00aBgYHq0qWL1q5d63LPe++9pw4dOigwMFD9+vXT0aNH62IrAAAAAAAAAAAAdBC5KzU1VcOHD1dZWZlCQkIkSR988IFOnz6tIUOGSJKysrL05z//WUuXLlVMTIy2bNmiO++8U02aNFFSUpKKi4s1dOhQPfTQQ7rvvvu0e/duTZw48aLPttvtstvtzmObzVY7mwQAAAAAAAAAAPUaHURuSk5OVnBwsP761786z7322mu65ZZb1LBhQ9ntds2ZM0evvPKKkpOT1bZtW6Wnp+vOO+/Uiy++KEl64YUX1K5dO2VnZ6tjx45KTU1Venr6RZ+dlZUlk8nkHNHR0bW1TQAAAAAAAAAAUI9RIHKTn5+fRowYodWrV0uSTp06pbffflupqamSpEOHDun06dO67rrrFBIS4hyrVq3S4cOHJUlFRUW66qqrXNbt2bPnRZ+dkZEhq9XqHMXFxTW8OwAAAAAAAAAA4A14xdwlSE1NVVJSkkpLS7Vx40YFBgZq4MCBkqSysjJJ0t///nc1b97c5T6j0firnms0Gn/1GgAAAAAAAAAAABSILkGvXr0UHR2tN954Q++//76GDx8uf39/SVJcXJyMRqOOHTumpKSkC94fGxurd955x+Xcxx9/XOu5AQAAAAAAAAAAJApEl+yOO+7Q0qVL9fnnn2vz5s3O8w0bNtRjjz2mRx99VJWVlbrmmmtktVqVl5en0NBQ3X333XrggQeUnZ2tSZMmadSoUcrPz1dOTo7nNgMAAAAAAAAAALwKBaJLlJqaqqeeekqtWrVS7969Xa49+eSTatKkibKysvTFF18oLCxM3bp10x//+EdJUsuWLbVu3To9+uijWrRokXr06KE5c+Zo5MiRl5Rly+wUhYaG/uo9AQAAAAAAAAAA72BwOBwOT4fApbHZbDKZTLJarRSIAAAAAAAAAADwcu7UDeggqgU5OTkaP368Tp48WSfP6zttjXyNgXXyrJqUPy/N0xEAAAAAAAAAAPBKPp4OAAAAAAAAAAAAgLpFgQgAAAAAAAAAAMDLUCCqpnfffVdhYWGqqKiQJO3Zs0cGg0FTpkxxzhk1apTuvPNO5/EHH3yg2NhYhYSEaODAgSopKXFeq6ys1KxZs9SiRQsZjUYlJCRow4YNdbchAAAAAAAAAADgtSgQVVOfPn30ww8/qKCgQJKUm5urxo0by2KxOOfk5ubKbDZLkk6fPq358+fr1Vdf1ZYtW3Ts2DE99thjzrkLFy5Udna25s+fr7179yo5OVm33HKLDh48WGUGu90um83mMgAAAAAAAAAAANxFgaiaTCaTEhISnAUhi8WiRx99VAUFBSorK9NXX32lQ4cOKSkpSZJUXl6upUuXKjExUd26ddPDDz+sTZs2OdebP3++Hn/8cd1+++3q2LGjnnnmGSUkJGjBggVVZsjKypLJZHKO6Ojo2twyAAAAAAAAAACopygQuSEpKUkWi0UOh0Nbt27V0KFDFRsbq23btik3N1fNmjVTTEyMJCkoKEjt2rVz3hsVFaXS0lJJks1m09dff63evXu7rN+7d28VFRVV+fyMjAxZrVbnKC4uroVdAgAAAAAAAACA+s7P0wF+T8xms1555RUVFhbK399fnTp1ktlslsVi0YkTJ5zdQ5Lk7+/vcq/BYJDD4fhVzzcajTIajb9qDQAAAAAAAAAAADqI3HDuO0TPPfecsxh0rkBksVic3x+6mNDQUDVr1kx5eXku5/Py8hQXF1fTsQEAAAAAAAAAAFzQQeSGRo0aKT4+XqtXr9bixYslSX379tWIESNUXl7u0kF0MZMmTdKMGTPUrl07JSQkaMWKFdqzZ49Wr17tdq4ts1MUGhrq9n0AAAAAAAAAAMA7USByU1JSkvbs2ePsFgoPD1dcXJy++eYbdezYsdrrjBs3TlarVRMnTlRpaani4uL0zjvvOL9hBAAAAAAAAAAAUFsMjl/7YRx4jM1mk8lkktVqpYMIAAAAAAAAAAAv507dgA6iWlJcXKwZM2Zow4YN+u677xQVFaXBgwdr+vTpioiIkPTz94tyc3PPu7e8vFx+ftX/1/Sdtka+xsAay15X8ueleToCAAAAAAAAAABeycfTAeqjL774QomJiTp48KDWrFmjQ4cOaenSpdq0aZN69uyp48ePO+eOHj1aJSUlLsOd4hAAAAAAAAAAAIC7qETUgoceekgBAQH6xz/+ocDAnzt7WrZsqa5du6pdu3aaOnWqXnjhBUlSUFCQIiMjPRkXAAAAAAAAAAB4GTqIatjx48f1wQcfaMyYMc7i0DmRkZFKTU3VG2+8oUv59JPdbpfNZnMZAAAAAAAAAAAA7qJAVMMOHjwoh8Oh2NjYC16PjY3ViRMn9O2330qSlixZopCQEOeYOHFilWtnZWXJZDI5R3R0dK3sAQAAAAAAAAAA1G+8Yq6WVLdDKDU1VVOnTnUeh4WFVTk3IyNDEyZMcB7bbDaKRAAAAAAAAAAAwG0UiGpY+/btZTAYVFRUpCFDhpx3vaioSI0aNVKTJk0kSSaTSe3bt6/W2kajUUajsUbzAgAAAAAAAAAA78Mr5mpYRESErrvuOi1ZskQ//vijy7X//Oc/Wr16tW677TYZDAYPJQQAAAAAAAAAAN6OAlEtWLx4sex2u5KTk7VlyxYVFxdrw4YNuu6669S8eXM99dRTno4IAAAAAAAAAAC8GK+YqwUxMTHavXu3ZsyYoREjRuj48eOKjIzU4MGDNWPGDIWHh9fo87bMTlFoaGiNrgkAAAAAAAAAAOovg8PhcHg6BC6NzWaTyWSS1WqlQAQAAAAAAAAAgJdzp25AB1E90HfaGvkaAz0dQ/nz0jwdAQAAAAAAAAAAVAPfIAIAAAAAAAAAAPAyFIh+g86cOePpCAAAAAAAAAAAoB6jQFQNdrtd48aN02WXXaYGDRrommuu0a5du1RZWakWLVrohRdecJlfUFAgHx8f/fvf/5YknTx5UqNGjVKTJk0UGhqqa6+9VoWFhc75M2fOVEJCgl5++WW1adNGDRo0qNP9AQAAAAAAAAAA70KBqBomT56sdevWaeXKlfrkk0/Uvn17JScn6+TJk0pJSdFrr73mMn/16tXq3bu3WrVqJUkaPny4SktL9f777ys/P1/dunVT//79dfz4cec9hw4d0rp16/TWW29pz549F8xht9tls9lcBgAAAAAAAAAAgLsoEF3EqVOn9MILL2jevHm64YYbFBcXp2XLlikwMFDLly9Xamqq8vLydOzYMUlSZWWlXn/9daWmpkqStm3bpp07d+ovf/mLEhMTFRMTo/nz5yssLExr1651PufMmTNatWqVunbtqvj4+AtmycrKkslkco7o6Oja/wEAAAAAAAAAAEC9Q4HoIg4fPqzy8nL17t3bec7f3189evRQUVGREhISFBsb6+wiys3NVWlpqYYPHy5JKiwsVFlZmSIiIhQSEuIcR44c0eHDh51rtmrVSk2aNPnFLBkZGbJarc5RXFxcCzsGAAAAAAAAAAD1nZ+nA9QHqampeu211zRlyhS99tprGjhwoCIiIiRJZWVlioqKksViOe++sLAw59/BwcEXfY7RaJTRaKyp2AAAAAAAAAAAwEvRQXQR7dq1U0BAgPLy8pznysvLtWvXLsXFxUmS7rjjDn366afKz8/X2rVrna+Xk6Ru3brpP//5j/z8/NS+fXuX0bhx4zrfDwAAAAAAAAAAAB1EFxEcHKwHH3xQkyZNUnh4uFq2bKm5c+fq9OnTuvfeeyVJrVu3Vq9evXTvvfeqoqJCt9xyi/P+AQMGqGfPnho8eLDmzp2rDh066Ouvv9bf//53DRkyRImJib8645bZKQoNDf3V6wAAAAAAAAAAAO9Agagann76aVVWVuquu+7SDz/8oMTERH3wwQdq1KiRc05qaqrGjBmjtLQ0BQYGOs8bDAa99957mjp1qu655x59++23ioyMVN++fdW0aVNPbAcAAAAAAAAAAHg5g8PhcHg6xO9Renq6Tp48qfXr11/yGhaLRf369dOJEycUFhamnJwcjR8/XidPnqzW/TabTSaTSVarlQ4iAAAAAAAAAAC8nDt1AzqI6oG+09bI1xh48Ym1LH9emqcjAAAAAAAAAACAavDxdAAAAAAAAAAAAADULQpEF7F27Vp17txZgYGBioiI0IABA3Tq1Cnn9fnz5ysqKkoRERF66KGHVF5e7rz26quvKjExUQ0bNlRkZKTuuOMOlZaWemIbAAAAAAAAAAAAThSIfkFJSYlSUlI0cuRIFRUVyWKxaOjQoTr32abNmzfr8OHD2rx5s1auXKmcnBzl5OQ47y8vL9eTTz6pwsJCrV+/XkePHlV6evol57Hb7bLZbC4DAAAAAAAAAADAXXyD6BeUlJTo7NmzGjp0qFq1aiVJ6ty5s/N6o0aNtHjxYvn6+qpTp0666aabtGnTJo0ePVqSNHLkSOfctm3b6vnnn1f37t1VVlamkJAQt/NkZWUpMzPzV+4KAAAAAAAAAAB4OzqIfkGXLl3Uv39/de7cWcOHD9eyZct04sQJ5/XLL79cvr6+zuOoqCiXV8jl5+fr5ptvVsuWLdWwYUMlJSVJko4dO3ZJeTIyMmS1Wp2juLj4EncGAAAAAAAAAAC8GQWiX+Dr66uNGzfq/fffV1xcnBYtWqSOHTvqyJEjkiR/f3+X+QaDQZWVlZKkU6dOKTk5WaGhoVq9erV27fp/7N17WNRl/v/x13BwRHEGT6tYKKaAWIISWp7xUFLmppYlHhAVzQoNFQ/kCdTEPJSWm5aZaGuH3UprPW65gUplSoKVZkYSlBTlYSa0HRXm90ff5reznkDBWZ3n47ru65rP/bnv+/O64c/3dX8+e7R+/XpJ0pkzZ64oj9FolMlkcmoAAAAAAAAAAAAVxSvmLsNgMKhjx47q2LGjZs6cqSZNmjgKPZfy1Vdf6dixY5o/f74CAgIkSXv37q3quAAAAAAAAAAAAJfFCaJL2L17t+bNm6e9e/eqoKBA77zzjn7++WeFhoZedm7jxo1VrVo1Pf/88/r222/13nvvac6cOdcgNQAAAAAAAAAAwKVxgugSTCaTduzYoSVLlshqtapJkyZavHix7rnnHr355puXnFu/fn2lp6frySef1HPPPaeIiAgtWrRIf/7znys95465MbxuDgAAAAAAAAAAlJvBbrfbXR0CV8ZqtcpsNstisVAgAgAAAAAAAADAzVWkbsAJohtAl+mvy9Po4+oYyl4Y6+oIAAAAAAAAAACgHNz2G0RxcXHq27evq2MAAAAAAAAAAABcc25bIAIAAAAAAAAAAHBXFIgkbd26VZ06dZKfn5/q1q2r++67T3l5eY77+fn5MhgM+tvf/qbOnTvLx8dHbdu21ddff609e/YoMjJSvr6+uueee/Tzzz87rf3yyy8rNDRU1atXV4sWLfTCCy847p05c0YJCQny9/dX9erV1aRJE6WlpV2zfQMAAAAAAAAAAPfEN4gknTp1ShMmTFBYWJhKSko0c+ZM9evXTzk5OfLw+P81tFmzZmnJkiVq3LixRowYoUGDBqlWrVpaunSpatSooYceekgzZ87U8uXLJUnr1q3TzJkztWzZMrVp00b79u3TqFGjVLNmTQ0bNkzPPfec3nvvPf3tb39T48aNVVhYqMLCwovmtNlsstlsjmur1Vp1fxQAAAAAAAAAAHDDokAk6YEHHnC6fuWVV1S/fn0dOHBAt912m6M/KSlJvXr1kiQ98cQTiomJ0fbt29WxY0dJ0siRI5Wenu4YP2vWLC1evFj9+/eXJDVt2lQHDhzQiy++qGHDhqmgoEBBQUHq1KmTDAaDmjRpcsmcaWlpSk1NrYwtAwAAAAAAAAAAN8Yr5iQdPnxYMTExuuWWW2QymRQYGChJKigocBoXFhbm+N2gQQNJUqtWrZz6iouLJf1+KikvL08jR46Ur6+vo82dO9fx+rq4uDjl5OQoJCRE48aN0z//+c9L5kxOTpbFYnG0S502AgAAAAAAAAAAuBhOEEnq06ePmjRpopUrV6pRo0YqKyvTbbfdpjNnzjiN8/b2dvw2GAwX7CsrK5MklZSUSJJWrlypO+64w2kdT09PSVJERISOHDmiLVu26IMPPtBDDz2knj176q233rpgTqPRKKPReJW7BQAAAAAAAAAA7s7tC0THjh3ToUOHtHLlSnXu3FmStGvXrqtet0GDBmrUqJG+/fZbDR48+KLjTCaTHn74YT388MN68MEHFR0drePHj6tOnTpXnQEAAAAAAAAAAOBC3L5AVLt2bdWtW1cvvfSS/P39VVBQoKlTp1bK2qmpqRo3bpzMZrOio6Nls9m0d+9enThxQhMmTNAzzzwjf39/tWnTRh4eHvr73/+uhg0bys/Pr0LP2TE3RiaTqVIyAwAAAAAAAACAG5/bFojKysrk5eUlDw8PvfHGGxo3bpxuu+02hYSE6LnnnlNUVNRVPyM+Pl41atTQwoULNWnSJNWsWVOtWrVSYmKiJKlWrVpasGCBDh8+LE9PT7Vt21abN2+WhwefhgIAAAAAAAAAAFXHYLfb7a4O4QrR0dFq3ry5li1b5uooV8xqtcpsNstisXCCCAAAAAAAAAAAN1eRuoHbnSA6ceKEsrKylJGRoTFjxpR7XlxcnE6ePKkNGzZUXbgr1GX66/I0+rg6hrIXxro6AgAAAAAAAAAAKAe3KxCNGDFCe/bs0cSJE3X//fe7Og4AAAAAAAAAAMA153Yfu1m/fr2+//57PfXUUzIYDFe0xtatW9WpUyf5+fmpbt26uu+++5SXl+e4n5+fL4PBoHfeeUfdunVTjRo1FB4ero8//thpnV27dqlz587y8fFRQECAxo0bp1OnTl3V/gAAAAAAAAAAAC7H7QpEleHUqVOaMGGC9u7dq+3bt8vDw0P9+vVTWVmZ07hp06YpKSlJOTk5Cg4OVkxMjM6dOydJysvLU3R0tB544AHt379fb775pnbt2qWEhISLPtdms8lqtTo1AAAAAAAAAACAijLY7Xa7q0NcDy71DaJffvlF9evX1+eff67bbrtN+fn5atq0qV5++WWNHDlSknTgwAHdeuutOnjwoFq0aKH4+Hh5enrqxRdfdKyza9cude3aVadOnVL16tXPe05KSopSU1PP6w8fu4JvEAEAAAAAAAAA4OasVqvMZrMsFotMJtMlx3KC6AocPnxYMTExuuWWW2QymRQYGChJKigocBoXFhbm+O3v7y9JKi4uliTl5uYqPT1dvr6+jtarVy+VlZXpyJEjF3xucnKyLBaLoxUWFlbB7gAAAAAAAAAAwI3Oy9UBrkd9+vRRkyZNtHLlSjVq1EhlZWW67bbbdObMGadx3t7ejt9/fO/oj9fQlZSU6JFHHtG4cePOW79x48YXfK7RaJTRaKysbQAAAAAAAAAAADdFgaiCjh07pkOHDmnlypXq3LmzpN9fDVdREREROnDggJo3b17ZEQEAAAAAAAAAAC6JV8xVUO3atVW3bl299NJL+uabb/Svf/1LEyZMqPA6U6ZM0UcffaSEhATl5OTo8OHDevfdd5WQkFAFqQEAAAAAAAAAAP4/ThCVU1lZmby8vOTh4aE33nhD48aN02233aaQkBA999xzioqKqtB6YWFhyszM1LRp09S5c2fZ7XY1a9ZMDz/8cIWz7Zgbc9mPTQEAAAAAAAAAAPzBYLfb7a4OcT2Ijo5W8+bNtWzZMldHcbBarTKbzbJYLBSIAAAAAAAAAABwcxWpG3CC6L/k5+eradOm2rdvn1q3bq0TJ04oKytLGRkZGjNmjKvjXVCX6a/L0+jj6hjKXhjr6ggAAAAAAAAAAKAcKBBdxogRI7Rnzx5NnDhR999/v6vjAAAAAAAAAAAAXDUKRJexfv16V0cAAAAAAAAAAACoVB6uDuAKW7duVadOneTn56e6devqvvvuU15entOYr776Sh06dFD16tV12223KTMz0+l+Zmam2rVrJ6PRKH9/f02dOlXnzp2TJL300ktq1KiRysrKnObcf//9GjFihOP63XffVUREhKpXr65bbrlFqampjjUAAAAAAAAAAACqilsWiE6dOqUJEyZo79692r59uzw8PNSvXz+ngs6kSZM0ceJE7du3T+3bt1efPn107NgxSdIPP/yge++9V23btlVubq6WL1+uVatWae7cuZKkAQMG6NixY/rwww8d6x0/flxbt27V4MGDJUk7d+5UbGysnnjiCR04cEAvvvii0tPT9dRTT100t81mk9VqdWoAAAAAAAAAAAAVZbDb7XZXh3C1X375RfXr19fnn38uX19fNW3aVPPnz9eUKVMkSefOnVPTpk01duxYTZ48WdOmTdPbb7+tgwcPymAwSJJeeOEFTZkyRRaLRR4eHurbt6/q1q2rVatWSfr9VFFqaqoKCwvl4eGhnj17qkePHkpOTnbk+Otf/6rJkyfr6NGjF8yZkpKi1NTU8/rDx66Qp9Gnsv8sFZa9MNbVEQAAAAAAAAAAcFtWq1Vms1kWi0Umk+mSY93yBNHhw4cVExOjW265RSaTSYGBgZKkgoICx5j27ds7fnt5eSkyMlIHDx6UJB08eFDt27d3FIckqWPHjiopKdH3338vSRo8eLDefvtt2Ww2SdK6des0cOBAeXj8/ifPzc3V7Nmz5evr62ijRo1SUVGRTp8+fcHcycnJslgsjlZYWFh5fxQAAAAAAAAAAOA2vFwdwBX69OmjJk2aaOXKlY5vBd122206c+ZMpT7Dbrdr06ZNatu2rXbu3Klnn33Wcb+kpESpqanq37//eXOrV69+wTWNRqOMRmOlZQQAAAAAAAAAAO7J7QpEx44d06FDh7Ry5Up17txZkrRr167zxn3yySfq0qWLpN9fMZedna2EhARJUmhoqN5++23Z7XbHKaKsrCzVqlVLN998s6Tfizz9+/fXunXr9M033ygkJEQRERGO9SMiInTo0CE1b968SvcLAAAAAAAAAADw39yuQFS7dm3VrVtXL730kvz9/VVQUKCpU6eeN+4vf/mLgoKCFBoaqmeffVYnTpzQiBEjJEmPPfaYlixZorFjxyohIUGHDh3SrFmzNGHCBMcr5KTfXzN333336csvv9SQIUOc1p85c6buu+8+NW7cWA8++KA8PDyUm5urL774QnPnzq3aPwIAAAAAAAAAAHBrblcg8vDw0BtvvKFx48bptttuU0hIiJ577jlFRUU5jZs/f77mz5+vnJwcNW/eXO+9957q1asnSbrpppu0efNmTZo0SeHh4apTp45Gjhyp6dOnO63RvXt31alTR4cOHdKgQYOc7vXq1UsbN27U7Nmz9fTTT8vb21stWrRQfHx8hfe0Y27MZT82BQAAAAAAAAAA8AeD3W63uzoErozVapXZbJbFYqFABAAAAAAAAACAm6tI3cDtThDdiLpMf12eRh9Xx1D2wlhXRwAAAAAAAAAAAOXgcfkhAAAAAAAAAAAAuJFQIAIAAAAAAAAAAHAzbl8geuutt9SqVSv5+Piobt266tmzp06dOqWysjLNnj1bN998s4xGo1q3bq2tW7c65uXn58tgMOidd95Rt27dVKNGDYWHh+vjjz92Wn/lypUKCAhQjRo11K9fPz3zzDPy8/Nz3M/NzVW3bt1Uq1YtmUwm3X777dq7d+8Fs9psNlmtVqcGAAAAAAAAAABQUW5dICoqKlJMTIxGjBihgwcPKiMjQ/3795fdbtfSpUu1ePFiLVq0SPv371evXr305z//WYcPH3ZaY9q0aUpKSlJOTo6Cg4MVExOjc+fOSZKysrI0ZswYPfHEE8rJydFdd92lp556ymn+4MGDdfPNN2vPnj3Kzs7W1KlT5e3tfcG8aWlpMpvNjhYQEFA1fxgAAAAAAAAAAHBDM9jtdrurQ7jKZ599pttvv135+flq0qSJ072bbrpJjz/+uJ588klHX7t27dS2bVv95S9/UX5+vpo2baqXX35ZI0eOlCQdOHBAt956qw4ePKgWLVpo4MCBKikp0caNGx1rDBkyRBs3btTJkyclSSaTSc8//7yGDRt22bw2m002m81xbbVaFRAQoPCxK+Rp9LmaP0WlyF4Y6+oIAAAAAAAAAAC4LavVKrPZLIvFIpPJdMmxbn2CKDw8XD169FCrVq00YMAArVy5UidOnJDVatXRo0fVsWNHp/EdO3bUwYMHnfrCwsIcv/39/SVJxcXFkqRDhw6pXbt2TuP/+3rChAmKj49Xz549NX/+fOXl5V00r9FolMlkcmoAAAAAAAAAAAAV5dYFIk9PT73//vvasmWLWrZsqeeff14hISE6cuRIudf4z9fBGQwGSVJZWVm556ekpOjLL79U79699a9//UstW7bU+vXry78JAAAAAAAAAACACnLrApH0e1GnY8eOSk1N1b59+1StWjVt375djRo1UlZWltPYrKwstWzZstxrh4SEaM+ePU59/30tScHBwRo/frz++c9/qn///lq9evWVbQYAAAAAAAAAAKAcvFwdwJV2796t7du36+6779af/vQn7d69Wz///LNCQ0M1adIkzZo1S82aNVPr1q21evVq5eTkaN26deVef+zYserSpYueeeYZ9enTR//617+0ZcsWx0mj3377TZMmTdKDDz6opk2b6vvvv9eePXv0wAMPVGgfO+bG8Lo5AAAAAAAAAABQbm5dIDKZTNqxY4eWLFkiq9WqJk2aaPHixbrnnnvUq1cvWSwWTZw4UcXFxWrZsqXee+89BQUFlXv9jh07asWKFUpNTdX06dPVq1cvjR8/XsuWLZP0+yvujh07ptjYWP3000+qV6+e+vfvr9TU1KraMgAAAAAAAAAAgAx2u93u6hDuID8/X02bNlW/fv30888/a+fOneeNycjIULdu3XTixAn5+flddk2r1Sqz2azwsSvkafSpgtQVk70w1tURAAAAAAAAAABwW3/UDSwWy2XfPOb23yCqaosWLVJubq7y8/MlSf/4xz80bNgw14YCAAAAAAAAAABuza1fMXctfPrpp1qwYIEsFoskafLkyYqPj3dxKgAAAAAAAAAA4M7c9gTRxo0b5efnp9LSUklSTk6ODAaDpk6d6hgTHx+vIUOGSJLefvtt3XrrrTIajQoMDNTixYud1jMYDNqwYYNTn5+fn+69914VFxfr0KFDkqQBAwY47m/evFnBwcHy8fFRt27dHKeMAAAAAAAAAAAAqpLbFog6d+6sX3/9Vfv27ZMkZWZmql69esrIyHCMyczMVFRUlLKzs/XQQw9p4MCB+vzzz5WSkqIZM2YoPT39ip9fWFio/v37q0+fPsrJyVF8fLxTcepCbDabrFarUwMAAAAAAAAAAKgoty0Qmc1mtW7d2lEQysjI0Pjx47Vv3z6VlJTohx9+0DfffKOuXbvqmWeeUY8ePTRjxgwFBwcrLi5OCQkJWrhw4RU/f/ny5WrWrJkWL16skJAQDR48WHFxcZeck5aWJrPZ7GgBAQFX/HwAAAAAAAAAAOC+3LZAJEldu3ZVRkaG7Ha7du7cqf79+ys0NFS7du1SZmamGjVqpKCgIB08eFAdO3Z0mtuxY0cdPnzY8Yq6ijp48KDuuOMOp7727dtfck5ycrIsFoujFRYWXtGzAQAAAAAAAACAe/NydQBXioqK0iuvvKLc3Fx5e3urRYsWioqKUkZGhk6cOKGuXbuWey2DwSC73e7Ud/bs2UrNazQaZTQaK3VNAAAAAAAAAADgftz6BNEf3yF69tlnHcWgPwpEGRkZioqKkiSFhoYqKyvLaW5WVpaCg4Pl6ekpSapfv76Kiooc9w8fPqzTp09f9NmhoaH69NNPnfo++eSTytgWAAAAAAAAAADAJbl1gah27doKCwvTunXrHMWgLl266LPPPtPXX3/tKBpNnDhR27dv15w5c/T1119rzZo1WrZsmZKSkhxrde/eXcuWLdO+ffu0d+9ejRkzRt7e3hd99pgxY3T48GFNmjRJhw4d0muvvab09PSq3C4AAAAAAAAAAIAkN3/FnPT7d4hycnIcBaI6deqoZcuW+umnnxQSEiJJioiI0N/+9jfNnDlTc+bMkb+/v2bPnq24uDjHOosXL9bw4cPVuXNnNWrUSEuXLlV2dvZFn9u4cWO9/fbbGj9+vJ5//nm1a9dO8+bN04gRIyq8hx1zY2QymSo8DwAAAAAAAAAAuCeD/b8/nIPrhtVqldlslsVioUAEAAAAAAAAAICbq0jdwO1PEFWWqKgotW7dWkuWLLnmz+4y/XV5Gn2u+XP/W/bCWFdHAAAAAAAAAAAA5UCBqJK88847l/zmEAAAAAAAAAAAwP8KCkSVpE6dOq6OAAAAAAAAAAAAUC4erg5QGcrKypSWlqamTZvKx8dH4eHheuutt1RWVqabb75Zy5cvdxq/b98+eXh46LvvvpMknTx5UvHx8apfv75MJpO6d++u3Nxcx/iUlBS1bt1ar776qgIDA2U2mzVw4ED9+uuvjjFRUVFKTEx0XAcGBmrevHkaMWKEatWqpcaNG+ull15yyvHRRx+pdevWql69uiIjI7VhwwYZDAbl5ORU/h8JAAAAAAAAAADg/9wQBaK0tDStXbtWK1as0Jdffqnx48dryJAh2rlzp2JiYvTaa685jV+3bp06duyoJk2aSJIGDBig4uJibdmyRdnZ2YqIiFCPHj10/Phxx5y8vDxt2LBBGzdu1MaNG5WZman58+dfMtfixYsVGRmpffv26bHHHtOjjz6qQ4cOSfr9Q1F9+vRRq1at9Nlnn2nOnDmaMmXKJdez2WyyWq1ODQAAAAAAAAAAoKKu+wKRzWbTvHnz9Morr6hXr1665ZZbFBcXpyFDhujFF1/U4MGDlZWVpYKCAkm/nzZ64403NHjwYEnSrl279Omnn+rvf/+7IiMjFRQUpEWLFsnPz09vvfWW4zllZWVKT0/Xbbfdps6dO2vo0KHavn37JbPde++9euyxx9S8eXNNmTJF9erV04cffihJeu2112QwGLRy5Uq1bNlS99xzjyZNmnTJ9dLS0mQ2mx0tICDgav50AAAAAAAAAADATV33BaJvvvlGp0+f1l133SVfX19HW7t2rfLy8tS6dWuFhoY6ThFlZmaquLhYAwYMkCTl5uaqpKREdevWdZp/5MgR5eXlOZ4TGBioWrVqOa79/f1VXFx8yWxhYWGO3waDQQ0bNnTMOXTokMLCwlS9enXHmHbt2l1yveTkZFksFkcrLCws518JAAAAAAAAAADg//NydYCrVVJSIknatGmTbrrpJqd7RqNRkjR48GC99tprmjp1ql577TVFR0erbt26jvn+/v7KyMg4b20/Pz/Hb29vb6d7BoNBZWVll8x2JXMuxWg0OvYEAAAAAAAAAABwpa77AlHLli1lNBpVUFCgrl27XnDMoEGDNH36dGVnZ+utt97SihUrHPciIiL0448/ysvLS4GBgdcotRQSEqK//vWvstlsjqLPnj17rtnzAQAAAAAAAACA+7ruC0S1atVSUlKSxo8fr7KyMnXq1EkWi0VZWVkymUwaNmyYAgMD1aFDB40cOVKlpaX685//7Jjfs2dPtW/fXn379tWCBQsUHByso0ePatOmTerXr58iIyOrJPegQYM0bdo0jR49WlOnTlVBQYEWLVok6feTRhWxY26MTCZTVcQEAAAAAAAAAAA3oOv+G0SSNGfOHM2YMUNpaWkKDQ1VdHS0Nm3apKZNmzrGDB48WLm5uerXr598fHwc/QaDQZs3b1aXLl00fPhwBQcHa+DAgfruu+/UoEGDKstsMpn0j3/8Qzk5OWrdurWmTZummTNnSpLTd4kAAAAAAAAAAAAqm8Fut9tdHQK/W7dunYYPHy6LxeJUxLoYq9Uqs9ms8LEr5Gm8/Piqlr0w1tURAAAAAAAAAABwW3/UDSwWy2XfPHZDnCC6nI8//lienp7q3bt3pa6bnp4uPz+/K56/du1a7dq1S0eOHNGGDRs0ZcoUPfTQQ+UqDgEAAAAAAAAAAFwptygQrVq1SmPHjtWOHTt09OhRV8dx+PHHHzVkyBCFhoZq/PjxGjBggF566SVXxwIAAAAAAAAAADe4G75AVFJSojfffFOPPvqoevfurfT0dMe9C50A2rBhgwwGg+M6NzdX3bp1U61atWQymXT77bdr7969ysjIcLwOzmAwyGAwKCUlRZJks9mUlJSkm266STVr1tQdd9yhjIyM854bHh4uHx8feXl5KSQkRJMnT1aNGjWq8K8BAAAAAAAAAADgBgWiv/3tb2rRooVCQkI0ZMgQvfLKK6rIZ5cGDx6sm2++WXv27FF2dramTp0qb29vdejQQUuWLJHJZFJRUZGKioqUlJQkSUpISNDHH3+sN954Q/v379eAAQMUHR2tw4cPO9Y9ffq0Fi1apFdffVU7duxQQUGBY/7F2Gw2Wa1WpwYAAAAAAAAAAFBRXq4OUNVWrVqlIUOGSJKio6NlsViUmZmpqKiocs0vKCjQpEmT1KJFC0lSUFCQ457ZbJbBYFDDhg2dxq9evVoFBQVq1KiRJCkpKUlbt27V6tWrNW/ePEnS2bNntWLFCjVr1kzS70Wl2bNnXzJLWlqaUlNTy7dxAAAAAAAAAACAi7ihTxAdOnRIn376qWJiYiRJXl5eevjhh7Vq1apyrzFhwgTFx8erZ8+emj9/vvLy8i45/vPPP1dpaamCg4Pl6+vraJmZmU5za9So4SgOSZK/v7+Ki4svuXZycrIsFoujFRYWlnsfAAAAAAAAAAAAf7ihTxCtWrVK586dc5zkkSS73S6j0ahly5bJw8PjvNfNnT171uk6JSVFgwYN0qZNm7RlyxbNmjVLb7zxhvr163fBZ5aUlMjT01PZ2dny9PR0uufr6+v47e3t7XTPYDBc9tV3RqNRRqPxkmMAAAAAAAAAAAAu54YtEJ07d05r167V4sWLdffddzvd69u3r15//XU1adJEv/76q06dOqWaNWtKknJycs5bKzg4WMHBwRo/frxiYmK0evVq9evXT9WqVVNpaanT2DZt2qi0tFTFxcXq3Llzle0PAAAAAAAAAADgSt2wBaKNGzfqxIkTGjlypMxms9O9Bx54QKtWrdK2bdtUo0YNPfnkkxo3bpx2796t9PR0x7jffvtNkyZN0oMPPqimTZvq+++/1549e/TAAw9IkgIDA1VSUqLtEs39aAAAZnJJREFU27crPDxcNWrUUHBwsAYPHqzY2FgtXrxYbdq00c8//6zt27crLCxMvXv3vpZ/BgAAAAAAAAAAgPPcsAWiVatWqWfPnucVh6TfC0QLFizQ999/r7/+9a+aNGmSVq5cqR49eiglJUWjR4+WJHl6eurYsWOKjY3VTz/9pHr16ql///5KTU2VJHXo0EFjxozRww8/rGPHjmnWrFlKSUnR6tWrNXfuXE2cOFE//PCD6tWrpzvvvFP33Xdflex1x9wYmUymKlkbAAAAAAAAAADceAz2y334Bv+zrFarzGazLBYLBSIAAAAAAAAAANxcReoGN+wJosqSn5+vpk2bat++fWrdunWVPstgMGj9+vXq27dvheZ1mf66PI0+VROqArIXxro6AgAAAAAAAAAAKAcPVwcAAAAAAAAAAADAtUWBCAAAAAAAAAAAwM1QIPo/ZWVlWrBggZo3by6j0ajGjRvrqaeeuuDYzMxMtWvXTkajUf7+/po6darOnTvnuB8YGKglS5Y4zWndurVSUlIc14cPH1aXLl1UvXp1tWzZUu+//35VbAsAAAAAAAAAAOA8fIPo/yQnJ2vlypV69tln1alTJxUVFemrr746b9wPP/yge++9V3FxcVq7dq2++uorjRo1StWrV3cqAF1KWVmZ+vfvrwYNGmj37t2yWCxKTEy87DybzSabzea4tlqt5d0eAAAAAAAAAACAAwUiSb/++quWLl2qZcuWadiwYZKkZs2aqVOnTsrPz3ca+8ILLyggIEDLli2TwWBQixYtdPToUU2ZMkUzZ86Uh8flD2V98MEH+uqrr7Rt2zY1atRIkjRv3jzdc889l5yXlpam1NTUK9skAAAAAAAAAADA/+EVc5IOHjwom82mHj16lGts+/btZTAYHH0dO3ZUSUmJvv/++3I/LyAgwFEckqT27dtfdl5ycrIsFoujFRYWlut5AAAAAAAAAAAA/4kTRJJ8fHwqdT0PDw/Z7XanvrNnz171ukajUUaj8arXAQAAAAAAAAAA7o0TRJKCgoLk4+Oj7du3X3ZsaGioPv74Y6cCUFZWlmrVqqWbb75ZklS/fn0VFRU57lutVh05csRpjcLCQqcxn3zySWVsBQAAAAAAAAAA4LI4QSSpevXqmjJliiZPnqxq1aqpY8eO+vnnn/Xll1+e99q5xx57TEuWLNHYsWOVkJCgQ4cOadasWZowYYLj+0Pdu3dXenq6+vTpIz8/P82cOVOenp6ONXr27Kng4GANGzZMCxculNVq1bRp0644/465MTKZTFc8HwAAAAAAAAAAuBcKRP9nxowZ8vLy0syZM3X06FH5+/trzJgx54276aabtHnzZk2aNEnh4eGqU6eORo4cqenTpzvGJCcn68iRI7rvvvtkNps1Z84cpxNEHh4eWr9+vUaOHKl27dopMDBQzz33nKKjo6/JXgEAAAAAAAAAgHsz2P/7YzmosJSUFG3YsEE5OTnX9LlWq1Vms1kWi4UTRAAAAAAAAAAAuLmK1A0oEFWCkpIS2Ww21a1b95o+949/dPjYFfI0+lzTZ19I9sJYV0cAAAAAAAAAAMBtVaRAxCvmLuHMmTOqVq3aZcf5+vrK19f3GiQCAAAAAAAAAAC4eh6uDnCloqKiNHbsWCUmJqp27dpq0KCBVq5cqVOnTmn48OGqVauWmjdvri1btjjmZGZmql27djIajfL399fUqVN17tw5pzUTEhKUmJioevXqqVevXsrIyJDBYND27dsVGRmpGjVqqEOHDjp06JBjXkpKilq3bu24jouLU9++fbVo0SL5+/urbt26evzxx3X27FnHmKKiIvXu3Vs+Pj5q2rSpXnvtNQUGBmrJkiVV+ncDAAAAAAAAAAC4bgtEkrRmzRrVq1dPn376qcaOHatHH31UAwYMUIcOHfTZZ5/p7rvv1tChQ3X69Gn98MMPuvfee9W2bVvl5uZq+fLlWrVqlebOnXvemtWqVVNWVpZWrFjh6J82bZoWL16svXv3ysvLSyNGjLhktg8//FB5eXn68MMPtWbNGqWnpys9Pd1xPzY2VkePHlVGRobefvttvfTSSyouLr7kmjabTVar1akBAAAAAAAAAABU1HX9irnw8HBNnz5dkpScnKz58+erXr16GjVqlCRp5syZWr58ufbv369//OMfCggI0LJly2QwGNSiRQsdPXpUU6ZM0cyZM+Xh8XutLCgoSAsWLHA8o6ioSJL01FNPqWvXrpKkqVOnqnfv3vr3v/+t6tWrXzBb7dq1tWzZMnl6eqpFixbq3bu3tm/frlGjRumrr77SBx98oD179igyMlKS9PLLLysoKOiS+01LS1NqaupV/MUAAAAAAAAAAACu8xNEYWFhjt+enp6qW7euWrVq5ehr0KCBJKm4uFgHDx5U+/btZTAYHPc7duyokpISff/9946+22+//bLP8vf3d6x7Mbfeeqs8PT2d5vwx/tChQ/Ly8lJERITjfvPmzVW7du1L7jc5OVkWi8XRCgsLLzkeAAAAAAAAAADgQq7rE0Te3t5O1waDwanvj2JQWVlZudesWbPmZZ9VnnUvlK0iOS7EaDTKaDRe1RoAAAAAAAAAAADX9QmiiggNDdXHH38su93u6MvKylKtWrV08803X9MsISEhOnfunPbt2+fo++abb3TixIlrmgMAAAAAAAAAALgntykQPfbYYyosLNTYsWP11Vdf6d1339WsWbM0YcIEx/eHrpUWLVqoZ8+eGj16tD799FPt27dPo0ePlo+Pj9Mr8AAAAAAAAAAAAKrCdf2KuYq46aabtHnzZk2aNEnh4eGqU6eORo4cqenTp7skz9q1azVy5Eh16dJFDRs2VFpamr788ktVr169wmvtmBsjk8lUBSkBAAAAAAAAAMCNyGD/z3euwWW+//57BQQE6IMPPlCPHj3KNcdqtcpsNstisVAgAgAAAAAAAADAzVWkbuA2J4iulYyMDHXr1k0nTpyQn5/fRcf961//UklJiVq1aqWioiJNnjxZgYGB6tKlS4Wf2WX66/I0+lxF6sqRvTDW1REAAAAAAAAAAEA5UCBykbNnz+rJJ5/Ut99+q1q1aqlDhw5at26dvL29XR0NAAAAAAAAAADc4CgQuUivXr3Uq1evC947c+aMqlWrdo0TAQAAAAAAAAAAd+Hh6gCuFBgYqCVLljj1tW7dWikpKZIkg8Ggl19+Wf369VONGjUUFBSk9957z2n85s2bFRwcLB8fH3Xr1k35+fnnPWfXrl3q3LmzfHx8FBAQoHHjxunUqVNOOebMmaPY2FiZTCaNHj26srcKAAAAAAAAAADg4NYFovJITU3VQw89pP379+vee+/V4MGDdfz4cUlSYWGh+vfvrz59+ignJ0fx8fGaOnWq0/y8vDxFR0frgQce0P79+/Xmm29q165dSkhIcBq3aNEihYeHa9++fZoxY8YFs9hsNlmtVqcGAAAAAAAAAABQURSILiMuLk4xMTFq3ry55s2bp5KSEn366aeSpOXLl6tZs2ZavHixQkJCNHjwYMXFxTnNT0tL0+DBg5WYmKigoCB16NBBzz33nNauXat///vfjnHdu3fXxIkT1axZMzVr1uyCWdLS0mQ2mx0tICCgyvYNAAAAAAAAAABuXBSILiMsLMzxu2bNmjKZTCouLpYkHTx4UHfccYfT+Pbt2ztd5+bmKj09Xb6+vo7Wq1cvlZWV6ciRI45xkZGRl82SnJwsi8XiaIWFhVezNQAAAAAAAAAA4Ka8XB3AlTw8PGS32536zp4963Tt7e3tdG0wGFRWVlbuZ5SUlOiRRx7RuHHjzrvXuHFjx++aNWtedi2j0Sij0VjuZwMAAAAAAAAAAFyIWxeI6tevr6KiIse11Wp1OtVzOaGhoXrvvfec+j755BOn64iICB04cEDNmze/urAAAAAAAAAAAACVxK0LRN27d1d6err69OkjPz8/zZw5U56enuWeP2bMGC1evFiTJk1SfHy8srOzlZ6e7jRmypQpuvPOO5WQkKD4+HjVrFlTBw4c0Pvvv69ly5ZVyj52zI2RyWSqlLUAAAAAAAAAAMCNz62/QZScnKyuXbvqvvvuU+/evdW3b181a9as3PMbN26st99+Wxs2bFB4eLhWrFihefPmOY0JCwtTZmamvv76a3Xu3Flt2rTRzJkz1ahRo8reDgAAAAAAAAAAQLkY7P/9ER5cN6xWq8xmsywWCyeIAAAAAAAAAABwcxWpG7j1K+ZcLS4uTidPntSGDRuuap0u01+Xp9GnckJdheyFsa6OAAAAAAAAAAAAysGtXzEHAAAAAAAAAADgjigQAQAAAAAAAAAAuBleMXcdsdlsstlsjmur1erCNAAAAAAAAAAA4HrFCaLrSFpamsxms6MFBAS4OhIAAAAAAAAAALgOUSC6jiQnJ8tisThaYWGhqyMBAAAAAAAAAIDrEK+Yu44YjUYZjUZXxwAAAAAAAAAAANc5ThABAAAAAAAAAAC4GQpE/yOWLVumHj16uDoGAAAAAAAAAABwA7xi7n/EL7/8ory8vCuau2NujEwmUyUnAgAAAAAAAAAANyqD3W63uzoErozVapXZbJbFYqFABAAAAAAAAACAm6tI3YATRFcpKipKrVu31pIlSxQYGKjExEQlJiZKkgwGg9avX6++fftWaYYu01+Xp9GnSp9RHtkLY10dAQAAAAAAAAAAlAMFokq0Z88e1axZ09UxAAAAAAAAAAAALokCUSWqX7++qyMAAAAAAAAAAABcloerA9xIAgMDtWTJkovenzVrlvz9/bV//35J0q5du9S5c2f5+PgoICBA48aN06lTp65RWgAAAAAAAAAA4K4oEF0DdrtdY8eO1dq1a7Vz506FhYUpLy9P0dHReuCBB7R//369+eab2rVrlxISEi66js1mk9VqdWoAAAAAAAAAAAAVRYGoip07d05DhgzR9u3btWvXLjVv3lySlJaWpsGDBysxMVFBQUHq0KGDnnvuOa1du1b//ve/L7hWWlqazGazowUEBFzLrQAAAAAAAAAAgBsE3yCqYuPHj5fRaNQnn3yievXqOfpzc3O1f/9+rVu3ztFnt9tVVlamI0eOKDQ09Ly1kpOTNWHCBMe11WqlSAQAAAAAAAAAACqMAlEVu+uuu/T6669r27ZtGjx4sKO/pKREjzzyiMaNG3fenMaNG19wLaPRKKPRWGVZAQAAAAAAAACAe6BAVMX+/Oc/q0+fPho0aJA8PT01cOBASVJERIQOHDjgeOUcAAAAAAAAAADAtUKB6Bro16+fXn31VQ0dOlReXl568MEHNWXKFN15551KSEhQfHy8atasqQMHDuj999/XsmXLKrT+jrkxMplMVZQeAAAAAAAAAADcaCgQXSMPPvigysrKNHToUHl4eKh///7KzMzUtGnT1LlzZ9ntdjVr1kwPP/ywq6MCAAAAAAAAAIAbnMFut9tdHQJXxmq1ymw2y2KxcIIIAAAAAAAAAAA3V5G6ASeIbgBdpr8uT6OPq2Moe2GsqyMAAAAAAAAAAIBy8HB1AAAAAAAAAAAAAFxbFIgAAAAAAAAAAADcDAWiiygrK1NaWpqaNm0qHx8fhYeH66233lJZWZluvvlmLV++3Gn8vn375OHhoe+++06SdPLkScXHx6t+/foymUzq3r27cnNzHeNTUlLUunVrvfrqqwoMDJTZbNbAgQP166+/XjSTzWaT1Wp1agAAAAAAAAAAABVFgegi0tLStHbtWq1YsUJffvmlxo8fryFDhmjnzp2KiYnRa6+95jR+3bp16tixo5o0aSJJGjBggIqLi7VlyxZlZ2crIiJCPXr00PHjxx1z8vLytGHDBm3cuFEbN25UZmam5s+ff8lMZrPZ0QICAqpm8wAAAAAAAAAA4IZmsNvtdleH+F9js9lUp04dffDBB2rfvr2jPz4+XqdPn9bkyZMVERGh/Px8NW7cWGVlZWrcuLGmT5+uMWPGaNeuXerdu7eKi4tlNBod85s3b67Jkydr9OjRSklJ0cKFC/Xjjz+qVq1akqTJkydrx44d+uSTTy6ay2azOa6tVqsCAgIUPnaFPI0+VfTXKL/shbGujgAAAAAAAAAAgNuyWq0ym82yWCwymUyXHOt1jTJdV7755hudPn1ad911l1P/mTNn1KZNG7Vu3VqhoaF67bXXNHXqVGVmZqq4uFgDBgyQJOXm5qqkpER169Z1mv/bb78pLy/PcR0YGOgoDkmSv7+/iouLL5rLaDQ6FZwAAAAAAAAAAACuBAWiCygpKZEkbdq0STfddJPTvT8KNIMHD3YUiF577TVFR0c7CkIlJSXy9/dXRkbGeWv7+fk5fnt7ezvdMxgMKisrq8SdAAAAAAAAAAAAnI8C0QW0bNlSRqNRBQUF6tq16wXHDBo0SNOnT1d2drbeeustrVixwnEvIiJCP/74o7y8vBQYGHiNUgMAAAAAAAAAAJQPBaILqFWrlpKSkjR+/HiVlZWpU6dOslgsysrKkslk0rBhwxQYGKgOHTpo5MiRKi0t1Z///GfH/J49e6p9+/bq27evFixYoODgYB09elSbNm1Sv379FBkZWal5d8yNuey7BAEAAAAAAAAAAP5Agegi5syZo/r16ystLU3ffvut/Pz8FBERoSeffNIxZvDgwXrssccUGxsrHx8fR7/BYNDmzZs1bdo0DR8+XD///LMaNmyoLl26qEGDBq7YDgAAAAAAAAAAgIPBbrfbXR0CV8ZqtcpsNit87Ap5Gn0uP6GKZS+MdXUEAAAAAAAAAADc1h91A4vFctk3j3lco0wAAAAAAAAAAAD4H0GBCAAAAAAAAAAAwM1QILoCa9euVd26dWWz2Zz6+/btq6FDh0qSli9frmbNmqlatWoKCQnRq6++6hiXn58vg8GgnJwcR9/JkydlMBiUkZFxLbYAAAAAAAAAAADcGAWiKzBgwACVlpbqvffec/QVFxdr06ZNGjFihNavX68nnnhCEydO1BdffKFHHnlEw4cP14cffnhVz7XZbLJarU4NAAAAAAAAAACgoigQXQEfHx8NGjRIq1evdvT99a9/VePGjRUVFaVFixYpLi5Ojz32mIKDgzVhwgT1799fixYtuqrnpqWlyWw2O1pAQMDVbgUAAAAAAAAAALghCkRXaNSoUfrnP/+pH374QZKUnp6uuLg4GQwGHTx4UB07dnQa37FjRx08ePCqnpmcnCyLxeJohYWFV7UeAAAAAAAAAABwT16uDnC9atOmjcLDw7V27Vrdfffd+vLLL7Vp06ZyzfXw+L0uZ7fbHX1nz5697Dyj0Sij0XhlgQEAAAAAAAAAAP4PJ4iuQnx8vNLT07V69Wr17NnT8cq30NBQZWVlOY3NyspSy5YtJUn169eXJBUVFTnu5+TkXJvQAAAAAAAAAADA7XGC6CoMGjRISUlJWrlypdauXevonzRpkh566CG1adNGPXv21D/+8Q+98847+uCDDyT9/g2jO++8U/Pnz1fTpk1VXFys6dOnu2obAAAAAAAAAADAzRjs//meM1RYbGysNm3apKNHjzq9/m358uVatGiRCgsL1bRpU02fPl1Dhw513D948KBGjhypnJwchYSEaMGCBbr77rv14YcfKioqqlzPtlqtMpvNslgsMplMlb01AAAAAAAAAABwHalI3YAC0VXq0aOHbr31Vj333HPX/NkUiAAAAAAAAAAAwB8qUjfgFXNX6MSJE8rIyFBGRoaGDRsmg8GgEydOyM/P74rXjIuL08mTJ7Vhw4YKzesy/XV5Gn2u+LmVJXthrKsjAAAAAAAAAACAcqBAdIXatGmjEydO6Omnn9bAgQN19913y2w2uzoWAAAAAAAAAADAZVEgukL5+flO1w0bNnRNEAAAAAAAAAAAgArycHWA/0VRUVEaO3asEhMTVbt2bTVo0EArV67UqVOnNHz4cNWqVUvNmzfXli1bJEkZGRkyGAw6efKkJCk9PV1+fn7atm2bQkND5evrq+joaBUVFTmeUVpaqgkTJsjPz09169bV5MmTdbnPQdlsNlmtVqcGAAAAAAAAAABQURSILmLNmjWqV6+ePv30U40dO1aPPvqoBgwYoA4dOuizzz7T3XffraFDh+r06dMXnH/69GktWrRIr776qnbs2KGCggIlJSU57i9evFjp6el65ZVXtGvXLh0/flzr16+/ZKa0tDSZzWZHCwgIqNQ9AwAAAAAAAAAA90CB6CLCw8M1ffp0BQUFKTk5WdWrV1e9evU0atQoBQUFaebMmTp27Jj2799/wflnz57VihUrFBkZqYiICCUkJGj79u2O+0uWLFFycrL69++v0NBQrVix4rLfMEpOTpbFYnG0wsLCSt0zAAAAAAAAAABwD3yD6CLCwsIcvz09PVW3bl21atXK0degQQNJUnFxsUwm03nza9SooWbNmjmu/f39VVxcLEmyWCwqKirSHXfc4bjv5eWlyMjIS75mzmg0ymg0XvmmAAAAAAAAAAAAxAmii/L29na6NhgMTn0Gg0GSVFZWVu75l/vGEAAAAAAAAAAAwLVAgcgFzGaz/P39tXv3bkffuXPnlJ2d7cJUAAAAAAAAAADAXfCKORd54oknNH/+fAUFBalFixZ65plndPLkyStaa8fcmAu+5g4AAAAAAAAAAOBCKBC5yMSJE1VUVKRhw4bJw8NDI0aMUL9+/WSxWFwdDQAAAAAAAAAA3OAMdj6MU+kyMjLUrVs3nThxQn5+flX2HKvVKrPZrPCxK+Rp9Kmy55RX9sJYV0cAAAAAAAAAAMBt/VE3sFgsl33zGN8gqgRRUVFKTEx0dQwAAAAAAAAAAIByoUAEAAAAAAAAAADgZigQXaW4uDhlZmZq6dKlMhgMMhgMys/PlyRlZ2crMjJSNWrUUIcOHXTo0CFJUn5+vjw8PLR3716ntZYsWaImTZqorKzsWm8DAAAAAAAAAAC4EQpEV2np0qVq3769Ro0apaKiIhUVFSkgIECSNG3aNC1evFh79+6Vl5eXRowYIUkKDAxUz549tXr1aqe1Vq9erbi4OHl4XPjfYrPZZLVanRoAAAAAAAAAAEBFUSC6SmazWdWqVVONGjXUsGFDNWzYUJ6enpKkp556Sl27dlXLli01depUffTRR/r3v/8tSYqPj9frr78um80mSfrss8/0+eefa/jw4Rd9Vlpamsxms6P9UYgCAAAAAAAAAACoCApEVSgsLMzx29/fX5JUXFwsSerbt688PT21fv16SVJ6erq6deumwMDAi66XnJwsi8XiaIWFhVUXHgAAAAAAAAAA3LAoEFUhb29vx2+DwSBJju8LVatWTbGxsVq9erXOnDmj1157zfEKuosxGo0ymUxODQAAAAAAAAAAoKK8XB3gRlCtWjWVlpZWeF58fLxuu+02vfDCCzp37pz69+9fBekAAAAAAAAAAACccYKoEgQGBmr37t3Kz8/XL7/84jgldDmhoaG68847NWXKFMXExMjHx6eKkwIAAAAAAAAAAHCCqFIkJSVp2LBhatmypX777TetXr263HNHjhypjz766LKvl7uUHXNjeN0cAAAAAAAAAAAoNwpElSA4OFgff/yxU19cXJzTdevWrWW328+b+8MPP6hVq1Zq27ZtVUYEAAAAAAAAAABwuCELRBkZGerWrZtOnDghPz8/l2ZJT09XYmKiTp486dRfUlKi/Px8LVu2THPnzr2qZ3SZ/ro8ja5/PV32wlhXRwAAAAAAAAAAAOVwQ3yDKCoqSomJia6OUSEJCQm6/fbbFRUVpV27dqlv376ujgQAAAAAAAAAANzEDVEguh6lp6fLZrPpzTfflMFgcHUcAAAAAAAAAADgRq77AlFcXJwyMzO1dOlSGQwGGQwG5efnS5Kys7MVGRmpGjVqqEOHDjp06JDT3OXLl6tZs2aqVq2aQkJC9Oqrrzru5efny2AwKCcnx9F38uRJGQwGZWRkOPree+89BQUFqXr16urWrZvWrFkjg8Fw3ivltm3bptDQUPn6+io6OlpFRUWSpJSUFK1Zs0bvvvuuI/9/rg8AAAAAAAAAAFDZrvsC0dKlS9W+fXuNGjVKRUVFKioqUkBAgCRp2rRpWrx4sfbu3SsvLy+NGDHCMW/9+vV64oknNHHiRH3xxRd65JFHNHz4cH344YflfvaRI0f04IMPqm/fvsrNzdUjjzyiadOmnTfu9OnTWrRokV599VXt2LFDBQUFSkpKkiQlJSXpoYcechSNioqK1KFDhws+z2azyWq1OjUAAAAAAAAAAICK8nJ1gKtlNptVrVo11ahRQw0bNpQkffXVV5Kkp556Sl27dpUkTZ06Vb1799a///1vVa9eXYsWLVJcXJwee+wxSdKECRP0ySefaNGiRerWrVu5nv3iiy8qJCRECxculCSFhIToiy++0FNPPeU07uzZs1qxYoWaNWsm6ffvD82ePVuS5OvrKx8fH9lsNkf+i0lLS1Nqamq5sgEAAAAAAAAAAFzMdX+C6FLCwsIcv/39/SVJxcXFkqSDBw+qY8eOTuM7duyogwcPlnv9Q4cOqW3btk597dq1O29cjRo1HMWhP7L8kaMikpOTZbFYHK2wsLDCawAAAAAAAAAAAFz3J4guxdvb2/HbYDBIksrKyso118Pj99qZ3W539J09e/aqc/yR5T/XLS+j0Sij0XhFGQAAAAAAAAAAAP5wQ5wgqlatmkpLSys0JzQ0VFlZWU59WVlZatmypSSpfv36kqSioiLH/ZycHKfxISEh2rt3r1Pfnj17KpRDurL8AAAAAAAAAAAAV+qGOEEUGBio3bt3Kz8/X76+vuU6JTRp0iQ99NBDatOmjXr27Kl//OMfeuedd/TBBx9Iknx8fHTnnXdq/vz5atq0qYqLizV9+nSnNR555BE988wzmjJlikaOHKmcnBylp6dL+v8nlsqbf9u2bTp06JDq1q0rs9l83qmjS9kxN0Ymk6nc4wEAAAAAAAAAgHu7IU4QJSUlydPTUy1btlT9+vVVUFBw2Tl9+/bV0qVLtWjRIt1666168cUXtXr1akVFRTnGvPLKKzp37pxuv/12JSYmau7cuU5rNG3aVG+99ZbeeecdhYWFafny5Zo2bZokVehVcKNGjVJISIgiIyNVv3798042AQAAAAAAAAAAVCaD/Uo+hoOLeuqpp7RixQoVFhZW+bOsVqvMZrMsFgsniAAAAAAAAAAAcHMVqRvcEK+Yc6UXXnhBbdu2Vd26dZWVlaWFCxeqSZMm6tu3rzZs2OA0NiMjQ926ddOJEyfk5+dXaRm6TH9dnkafSlvvSmUvjHV1BAAAAAAAAAAAUA4UiK7S4cOHNXfuXB0/flyNGzfWxIkTdfjwYVmtVldHAwAAAAAAAAAAuKAb4htErvTss8/q6NGj+ve//62vv/5aM2bMkIdH+f6su3btUufOneXj46OAgACNGzdOp06dquLEAAAAAAAAAADA3VEgcpG8vDxFR0frgQce0P79+/Xmm29q165dSkhIuOgcm80mq9Xq1AAAAAAAAAAAACqKV8xVkY0bN8rX19epr7S01PE7LS1NgwcPVmJioiQpKChIzz33nLp27arly5erevXq562Zlpam1NTUKs0NAAAAAAAAAABufJwgqiLdunVTTk6OU3v55Zcd93Nzc5Weni5fX19H69Wrl8rKynTkyJELrpmcnCyLxeJohYWF12o7AAAAAAAAAADgBsIJoipSs2ZNNW/e3Knv+++/d/wuKSnRI488onHjxp03t3Hjxhdc02g0ymg0Vm5QAAAAAAAAAADgdigQuUhERIQOHDhwXhEJAAAAAAAAAACgqvGKOReZMmWKPvroIyUkJCgnJ0eHDx/Wu+++q4SEBFdHAwAAAAAAAAAANzhOELlIWFiYMjMzNW3aNHXu3Fl2u13NmjXTww8/XOG1dsyNkclkqoKUAAAAAAAAAADgRmSw2+12V4fAlbFarTKbzbJYLBSIAAAAAAAAAABwcxWpG3CC6AqlpKRow4YNysnJkSTFxcXp5MmT2rBhwxWvmZGRoW7duunEiRPy8/Mr97wu01+Xp9Hnip9bWbIXxro6AgAAAAAAAAAAKAe+QQQAAAAAAAAAAOBmKBABAAAAAAAAAAC4GbcuEJWVlWnBggVq3ry5jEajGjdurKeeekqSNGXKFAUHB6tGjRq65ZZbNGPGDJ09e7ZCa6elpalp06by8fFReHi43nrrLacxmzdvVnBwsHx8fNStWzfl5+dX5vYAAAAAAAAAAAAuyK2/QZScnKyVK1fq2WefVadOnVRUVKSvvvpKklSrVi2lp6erUaNG+vzzzzVq1CjVqlVLkydPLtfaaWlp+utf/6oVK1YoKChIO3bs0JAhQ1S/fn117dpVhYWF6t+/vx5//HGNHj1ae/fu1cSJEy+5ps1mk81mc1xbrdYr3zwAAAAAAAAAAHBbblsg+vXXX7V06VItW7ZMw4YNkyQ1a9ZMnTp1kiRNnz7dMTYwMFBJSUl64403ylUgstlsmjdvnj744AO1b99eknTLLbdo165devHFF9W1a1ctX75czZo10+LFiyVJISEh+vzzz/X0009fdN20tDSlpqZe8Z4BAAAAAAAAAAAkNy4QHTx4UDabTT169Ljg/TfffFPPPfec8vLyVFJSonPnzslkMpVr7W+++UanT5/WXXfd5dR/5swZtWnTxvH8O+64w+n+H8Wki0lOTtaECRMc11arVQEBAeXKBAAAAAAAAAAA8Ae3LRD5+Phc9N7HH3+swYMHKzU1Vb169ZLZbNYbb7zhOO1zOSUlJZKkTZs26aabbnK6ZzQarziz0Wi8qvkAAAAAAAAAAACSGxeIgoKC5OPjo+3btys+Pt7p3kcffaQmTZpo2rRpjr7vvvuu3Gu3bNlSRqNRBQUF6tq16wXHhIaG6r333nPq++STTyqwAwAAAAAAAAAAgCvjtgWi6tWra8qUKZo8ebKqVaumjh076ueff9aXX36poKAgFRQU6I033lDbtm21adMmrV+/vtxr16pVS0lJSRo/frzKysrUqVMnWSwWZWVlyWQyadiwYRozZowWL16sSZMmKT4+XtnZ2UpPT7+iveyYG1Pu198BAAAAAAAAAAB4uDqAK82YMUMTJ07UzJkzFRoaqocffljFxcX685//rPHjxyshIUGtW7fWRx99pBkzZlRo7Tlz5mjGjBlKS0tTaGiooqOjtWnTJjVt2lSS1LhxY7399tvasGGDwsPDtWLFCs2bN68qtgkAAAAAAAAAAODEYLfb7a4O4Q6ioqLUunVrLVmypNLWtFqtMpvNslgsnCACAAAAAAAAAMDNVaRu4LavmLvW3nnnHXl7e0uSAgMDlZiYqMTExEpZu8v01+Vp9KmUta5G9sJYV0cAAAAAAAAAAADlQIHoGqlTp46rIwAAAAAAAAAAAEhy828QXUtRUVFKTExUVFSUvvvuO40fP14Gg0EGg8HV0QAAAAAAAAAAgJuhQHSNvfPOO7r55ps1e/ZsFRUVqaioqNxzbTabrFarUwMAAAAAAAAAAKgoCkTXWJ06deTp6alatWqpYcOGatiwYbnnpqWlyWw2O1pAQEAVJgUAAAAAAAAAADcqCkTXkeTkZFksFkcrLCx0dSQAAAAAAAAAAHAd8nJ1AJSf0WiU0Wh0dQwAAAAAAAAAAHCd4wSRC1SrVk2lpaWujgEAAAAAAAAAANwUBSIXCAwM1I4dO/TDDz/ol19+cXUcAAAAAAAAAADgZnjFnAvMnj1bjzzyiJo1ayabzSa73S5JMhgMWr16teLi4iq03o65MTKZTFWQFAAAAAAAAAAA3IgoEF0jGRkZjt933nmncnNzne4fOXJEXl5e6tix4zVOBgAAAAAAAAAA3A0Fov8Rmzdv1ujRoxUUFFThuV2mvy5Po08VpKqY7IWxro4AAAAAAAAAAADKgQLR/4jHH3/c1REAAAAAAAAAAICb8HB1AJzvzJkzro4AAAAAAAAAAABuYG5fIIqKitK4ceM0efJk1alTRw0bNlRKSorj/smTJxUfH6/69evLZDKpe/fuju8Hff311zIYDPrqq6+c1nz22WfVrFkzx/UXX3yhe+65R76+vmrQoIGGDh2qX375xSlDQkKCEhMTVa9ePfXq1atqNw0AAAAAAAAAANya2xeIJGnNmjWqWbOmdu/erQULFmj27Nl6//33JUkDBgxQcXGxtmzZouzsbEVERKhHjx46fvy4goODFRkZqXXr1jmtt27dOg0aNEjS7wWm7t27q02bNtq7d6+2bt2qn376SQ899NB5GapVq6asrCytWLHigjltNpusVqtTAwAAAAAAAAAAqCiD3W63uzqEK0VFRam0tFQ7d+509LVr107du3fXfffdp969e6u4uFhGo9Fxv3nz5po8ebJGjx6tJUuWaNmyZfrmm28k/X6qKCQkRAcPHlSLFi00d+5c7dy5U9u2bXPM//777xUQEKBDhw4pODhYUVFRslqt+uyzzy6ZNSUlRampqef1h49dIU+jz9X+Ka5a9sJYV0cAAAAAAAAAAMBtWa1Wmc1mWSwWmUymS47lBJGksLAwp2t/f38VFxcrNzdXJSUlqlu3rnx9fR3tyJEjysvLkyQNHDhQ+fn5+uSTTyT9fnooIiJCLVq0kCTl5ubqww8/dJr/x70/1pCk22+//bI5k5OTZbFYHK2wsLBS9g8AAAAAAAAAANyLl6sD/C/w9vZ2ujYYDCorK1NJSYn8/f2VkZFx3hw/Pz9JUsOGDdW9e3e99tpruvPOO/Xaa6/p0UcfdYwrKSlRnz599PTTT5+3hr+/v+N3zZo1L5vTaDQ6nWQCAAAAAAAAAAC4EhSILiEiIkI//vijvLy8FBgYeNFxgwcP1uTJkxUTE6Nvv/1WAwcOdFrj7bffVmBgoLy8+HMDAAAAAAAAAADXo2JxCT179lT79u3Vt29fLViwQMHBwTp69Kg2bdqkfv36KTIyUpLUv39/Pfroo3r00UfVrVs3NWrUyLHG448/rpUrVyomJkaTJ09WnTp19M033+iNN97Qyy+/LE9Pz6vOuWNuzGXfJQgAAAAAAAAAAPAHvkF0CQaDQZs3b1aXLl00fPhwBQcHa+DAgfruu+/UoEEDx7hatWqpT58+ys3N1eDBg53WaNSokbKyslRaWqq7775brVq1UmJiovz8/OThwZ8fAAAAAAAAAABcewa73W53dQhcGavVKrPZLIvFwgkiAAAAAAAAAADcXEXqBrxi7gbQZfrr8jT6uDqGshfGujoCAAAAAAAAAAAoB95xBgAAAAAAAAAA4GYoEFWRqKgojRs3TpMnT1adOnXUsGFDpaSkOO4XFBTo/vvvl6+vr0wmkx566CH99NNPrgsMAAAAAAAAAADcBgWiKrRmzRrVrFlTu3fv1oIFCzR79my9//77Kisr0/3336/jx48rMzNT77//vr799ls9/PDDl1zPZrPJarU6NQAAAAAAAAAAgIriG0RVKCwsTLNmzZIkBQUFadmyZdq+fbsk6fPPP9eRI0cUEBAgSVq7dq1uvfVW7dmzR23btr3gemlpaUpNTb024QEAAAAAAAAAwA2LE0RVKCwszOna399fxcXFOnjwoAICAhzFIUlq2bKl/Pz8dPDgwYuul5ycLIvF4miFhYVVlh0AAAAAAAAAANy4OEFUhby9vZ2uDQaDysrKrng9o9Eoo9F4tbEAAAAAAAAAAICb4wSRC4SGhqqwsNDpBNCBAwd08uRJtWzZ0oXJAAAAAAAAAACAO6BA5AI9e/ZUq1atNHjwYH322Wf69NNPFRsbq65duyoyMtLV8QAAAAAAAAAAwA2OV8y5gMFg0LvvvquxY8eqS5cu8vDwUHR0tJ5//vkrWm/H3BiZTKZKTgkAAAAAAAAAAG5UBrvdbnd1CFwZq9Uqs9ksi8VCgQgAAAAAAAAAADdXkboBJ4huAF2mvy5Po4+rYyh7YayrIwAAAAAAAAAAgHLgG0SVJC4uTn379r2iuVFRUUpMTKzUPAAAAAAAAAAAABdDgQgAAAAAAAAAAMDNUCC6Br744gvdc8898vX1VYMGDTR06FD98ssvkn4/eZSZmamlS5fKYDDIYDAoPz/ftYEBAAAAAAAAAMANjQJRFTt58qS6d++uNm3aaO/evdq6dat++uknPfTQQ5KkpUuXqn379ho1apSKiopUVFSkgICAC65ls9lktVqdGgAAAAAAAAAAQEV5uTrAjW7ZsmVq06aN5s2b5+h75ZVXFBAQoK+//lrBwcGqVq2aatSooYYNG15yrbS0NKWmplZ1ZAAAAAAAAAAAcIPjBFEVy83N1YcffihfX19Ha9GihSQpLy+vQmslJyfLYrE4WmFhYVVEBgAAAAAAAAAANzhOEFWxkpIS9enTR08//fR59/z9/Su0ltFolNForKxoAAAAAAAAAADATVEgqmIRERF6++23FRgYKC+vC/+5q1WrptLS0mucDAAAAAAAAAAAuCteMVeJLBaLcnJynNro0aN1/PhxxcTEaM+ePcrLy9O2bds0fPhwR1EoMDBQu3fvVn5+vn755ReVlZW5eCcAAAAAAAAAAOBGxgmiSpSRkaE2bdo49Y0cOVJZWVmaMmWK7r77btlsNjVp0kTR0dHy8Pi9PpeUlKRhw4apZcuW+u2333TkyBEFBgaW+7k75sbIZDJV5lYAAAAAAAAAAMANzGC32+2uDoErY7VaZTabZbFYKBABAAAAAAAAAODmKlI34ATRBURFRal169ZasmSJq6OUS5fpr8vT6OPqGMpeGOvqCAAAAAAAAAAAoBz4BhEAAAAAAAAAAICboUD0P+LMmTOujgAAAAAAAAAAANwEBaKLKCsr0+TJk1WnTh01bNhQKSkpjnsnT55UfHy86tevL5PJpO7duys3N9dxPy8vT/fff78aNGggX19ftW3bVh988IHT+oGBgZozZ45iY2NlMpk0evToy2ay2WyyWq1ODQAAAAAAAAAAoKIoEF3EmjVrVLNmTe3evVsLFizQ7Nmz9f7770uSBgwYoOLiYm3ZskXZ2dmKiIhQjx49dPz4cUlSSUmJ7r33Xm3fvl379u1TdHS0+vTpo4KCAqdnLFq0SOHh4dq3b59mzJhx2UxpaWkym82OFhAQUPkbBwAAAAAAAAAANzyD3W63uzrE/5qoqCiVlpZq586djr527dqpe/fuuu+++9S7d28VFxfLaDQ67jdv3lyTJ0++6Emg2267TWPGjFFCQoKk308QtWnTRuvXry93LpvNJpvN5ri2Wq0KCAhQ+NgV8jT6VHSblS57YayrIwAAAAAAAAAA4LasVqvMZrMsFotMJtMlx3pdo0zXnbCwMKdrf39/FRcXKzc3VyUlJapbt67T/d9++015eXmSfj9BlJKSok2bNqmoqEjnzp3Tb7/9dt4JosjIyAplMhqNTkUpAAAAAAAAAACAK0GB6CK8vb2drg0Gg8rKylRSUiJ/f39lZGScN8fPz0+SlJSUpPfff1+LFi1S8+bN5ePjowcffFBnzpxxGl+zZs2qig8AAAAAAAAAAHBRFIgqKCIiQj/++KO8vLwUGBh4wTFZWVmKi4tTv379JP1+oig/P//ahQQAAAAAAAAAALgECkQV1LNnT7Vv3159+/bVggULFBwcrKNHj2rTpk3q16+fIiMjFRQUpHfeeUd9+vSRwWDQjBkzVFZWdsl1f/jhB/Xo0UNr165Vu3btKpRpx9yYy75LEAAAAAAAAAAA4A8erg5wvTEYDNq8ebO6dOmi4cOHKzg4WAMHDtR3332nBg0aSJKeeeYZ1a5dWx06dFCfPn3Uq1cvRUREXHLds2fP6tChQzp9+vS12AYAAAAAAAAAAHBjBrvdbnd1CHeQkZGhbt266cSJE45vFf239PR0JSYm6uTJk+Va02q1ymw2K3zsCnkafSov7BXKXhjr6ggAAAAAAAAAALitP+oGFovlsm8e4wQRAAAAAAAAAACAm6FABAAAAAAAAAAA4GYoEFUim82mcePG6U9/+pOqV6+uTp06ac+ePRcdn56ersaNG6tGjRrq16+fjh07dg3TAgAAAAAAAAAAd0WBqBJNnjxZb7/9ttasWaPPPvtMzZs3V69evXT8+PHzxu7evVsjR45UQkKCcnJy1K1bN82dO/eS69tsNlmtVqcGAAAAAAAAAABQURSIKsmpU6e0fPlyLVy4UPfcc49atmyplStXysfHR6tWrTpv/NKlSxUdHa3JkycrODhY48aNU69evS75jLS0NJnNZkcLCAioqu0AAAAAAAAAAIAbGAWiSpKXl6ezZ8+qY8eOjj5vb2+1a9dOBw8ePG/8wYMHdccddzj1tW/f/pLPSE5OlsVicbTCwsLKCQ8AAAAAAAAAANyKl6sDoPyMRqOMRqOrYwAAAAAAAAAAgOscJ4gqSbNmzVStWjVlZWU5+s6ePas9e/aoZcuW540PDQ3V7t27nfo++eSTKs8JAAAAAAAAAADACaJKUrNmTT366KOaNGmS6tSpo8aNG2vBggU6ffq0Ro4cqdzcXKfx48aNU8eOHbVo0SLdf//92rZtm7Zu3eqi9AAAAAAAAAAAwJ1QIKpE8+fPV1lZmYYOHapff/1VkZGR2rZtm2rXrn3e2DvvvFMrV67UrFmzNHPmTPXs2VPTp0/XnDlzKvzcHXNjZDKZKmMLAAAAAAAAAADADRjsdrvd1SFwZaxWq8xmsywWCwUiAAAAAAAAAADcXEXqBpwgukIZGRnq1q2bTpw4IT8/P6WnpysxMVEnT5685lm6TH9dnkafa/7c/5a9MNbVEQAAAAAAAAAAQDl4uDrA/7qPP/5Ynp6e6t279yXHPfzww/r666+vUSoAAAAAAAAAAIArR4HoMlatWqWxY8dqx44dOnr06EXH+fj46E9/+tM1TAYAAAAAAAAAAHBlKBBdQklJid588009+uij6t27t9LT0y86Nj09XX5+fk59//jHP9S2bVtVr15d9erVU79+/Rz3bDabkpKSdNNNN6lmzZq64447lJGRUTUbAQAAAAAAAAAA+A8UiC7hb3/7m1q0aKGQkBANGTJEr7zyiux2e7nmbtq0Sf369dO9996rffv2afv27WrXrp3jfkJCgj7++GO98cYb2r9/vwYMGKDo6GgdPnz4omvabDZZrVanBgAAAAAAAAAAUFFerg7wv2zVqlUaMmSIJCk6OloWi0WZmZmKioq67NynnnpKAwcOVGpqqqMvPDxcklRQUKDVq1eroKBAjRo1kiQlJSVp69atWr16tebNm3fBNdPS0pzWAwAAAAAAAAAAuBKcILqIQ4cO6dNPP1VMTIwkycvLSw8//LBWrVpVrvk5OTnq0aPHBe99/vnnKi0tVXBwsHx9fR0tMzNTeXl5F10zOTlZFovF0QoLCyu+MQAAAAAAAAAA4PY4QXQRq1at0rlz5xwnfCTJbrfLaDRq2bJll53v4+Nz0XslJSXy9PRUdna2PD09ne75+vpedJ7RaJTRaCxHegAAAAAAAAAAgIujQHQB586d09q1a7V48WLdfffdTvf69u2r119/XS1atLjkGmFhYdq+fbuGDx9+3r02bdqotLRUxcXF6ty5c6VmBwAAAAAAAAAAuBwKRBewceNGnThxQiNHjpTZbHa698ADD2jVqlVauHDhJdeYNWuWevTooWbNmmngwIE6d+6cNm/erClTpig4OFiDBw9WbGysFi9erDZt2ujnn3/W9u3bFRYWpt69e1co7465MTKZTBXeJwAAAAAAAAAAcE98g+gCVq1apZ49e55XHJJ+LxDt3btX+/fvv+QaUVFR+vvf/6733ntPrVu3Vvfu3fXpp5867q9evVqxsbGaOHGiQkJC1LdvX+3Zs0eNGzeu9P0AAAAAAAAAAAD8J4Pdbre7OoSrREVFqXXr1lqyZImroyg9PV2JiYk6efJkuedYrVaZzWaFj10hT+PFv3l0rWQvjHV1BAAAAAAAAAAA3NYfdQOLxXLZN49xgggAAAAAAAAAAMDNUCC6xs6cOePqCAAAAAAAAAAAwM25fYGorKxMkydPVp06ddSwYUOlpKQ47p08eVLx8fGqX7++TCaTunfvrtzcXMf9vLw83X///WrQoIF8fX3Vtm1bffDBB07rBwYGas6cOYqNjZXJZNLo0aMl/f5KucaNG6tGjRrq16+fjh07dk32CwAAAAAAAAAA4PYFojVr1qhmzZravXu3FixYoNmzZ+v999+XJA0YMEDFxcXasmWLsrOzFRERoR49euj48eOSpJKSEt17773avn279u3bp+joaPXp00cFBQVOz1i0aJHCw8O1b98+zZgxQ7t379bIkSOVkJCgnJwcdevWTXPnzr1sVpvNJqvV6tQAAAAAAAAAAAAqymC32+2uDuEqUVFRKi0t1c6dOx197dq1U/fu3XXfffepd+/eKi4ultFodNxv3ry5Jk+e7DgJ9N9uu+02jRkzRgkJCZJ+P0HUpk0brV+/3jFm0KBBslgs2rRpk6Nv4MCB2rp1q06ePHnRvCkpKUpNTT2vP3zsCnkafcq976qSvTDW1REAAAAAAAAAAHBbVqtVZrNZFotFJpPpkmPd/gRRWFiY07W/v7+Ki4uVm5urkpIS1a1bV76+vo525MgR5eXlSfr9BFFSUpJCQ0Pl5+cnX19fHTx48LwTRJGRkU7XBw8e1B133OHU1759+8tmTU5OlsVicbTCwsIr2TIAAAAAAAAAAHBzXq4O4Gre3t5O1waDQWVlZSopKZG/v78yMjLOm+Pn5ydJSkpK0vvvv69FixapefPm8vHx0YMPPqgzZ844ja9Zs2alZDUajU6nmQAAAAAAAAAAAK6E2xeILiYiIkI//vijvLy8FBgYeMExWVlZiouLU79+/ST9fqIoPz//smuHhoZq9+7dTn2ffPLJ1UYGAAAAAAAAAAAoF7d/xdzF9OzZU+3bt1ffvn31z3/+U/n5+froo480bdo07d27V5IUFBSkd955Rzk5OcrNzdWgQYNUVlZ22bXHjRunrVu3atGiRTp8+LCWLVumrVu3VvWWAAAAAAAAAAAAJHGC6KIMBoM2b96sadOmafjw4fr555/VsGFDdenSRQ0aNJAkPfPMMxoxYoQ6dOigevXqacqUKbJarZdd+84779TKlSs1a9YszZw5Uz179tT06dM1Z86cK8q6Y27MZT82BQAAAAAAAAAA8AeD3W63uzoErozVapXZbJbFYqFABAAAAAAAAACAm6tI3YATRNdIXFycTp48qQ0bNlT62l2mvy5Po0+lr1tR2QtjXR0BAAAAAAAAAACUA98gAgAAAAAAAAAAcDMUiAAAAAAAAAAAANyM2xeIoqKiNHbsWCUmJqp27dpq0KCBVq5cqVOnTmn48OGqVauWmjdvri1btkiSSktLNXLkSDVt2lQ+Pj4KCQnR0qVLndYsLS3VhAkT5Ofnp7p162ry5Mn67089lZWVKS0tzbFOeHi43nrrrWu2bwAAAAAAAAAA4L7cvkAkSWvWrFG9evX06aefauzYsXr00Uc1YMAAdejQQZ999pnuvvtuDR06VKdPn1ZZWZluvvlm/f3vf9eBAwc0c+ZMPfnkk/rb3/7mWG/x4sVKT0/XK6+8ol27dun48eNav3690zPT0tK0du1arVixQl9++aXGjx+vIUOGKDMz86I5bTabrFarUwMAAAAAAAAAAKgog/2/j7a4maioKJWWlmrnzp2Sfj/9Yzab1b9/f61du1aS9OOPP8rf318ff/yx7rzzzvPWSEhI0I8//ug4AdSoUSONHz9ekyZNkiSdO3dOTZs21e23364NGzbIZrOpTp06+uCDD9S+fXvHOvHx8Tp9+rRee+21C2ZNSUlRamrqef3hY1fI0+hzdX+ISpC9MNbVEQAAAAAAAAAAcFtWq1Vms1kWi0Umk+mSY72uUab/aWFhYY7fnp6eqlu3rlq1auXoa9CggSSpuLhYkvSXv/xFr7zyigoKCvTbb7/pzJkzat26tSTJYrGoqKhId9xxh2O+l5eXIiMjHa+Z++abb3T69GndddddTjnOnDmjNm3aXDRncnKyJkyY4Li2Wq0KCAi4wl0DAAAAAAAAAAB3RYFIkre3t9O1wWBw6jMYDJJ+/27QG2+8oaSkJC1evFjt27dXrVq1tHDhQu3evbvczyspKZEkbdq0STfddJPTPaPReNF5RqPxkvcBAAAAAAAAAADKgwJRBWVlZalDhw567LHHHH15eXmO32azWf7+/tq9e7e6dOki6fdXzGVnZysiIkKS1LJlSxmNRhUUFKhr167XdgMAAAAAAAAAAMDtUSCqoKCgIK1du1bbtm1T06ZN9eqrr2rPnj1q2rSpY8wTTzyh+fPnKygoSC1atNAzzzyjkydPOu7XqlVLSUlJGj9+vMrKytSpUydZLBZlZWXJZDJp2LBhFcq0Y27MZd8lCAAAAAAAAAAA8AcKRBX0yCOPaN++fXr44YdlMBgUExOjxx57TFu2bHGMmThxooqKijRs2DB5eHhoxIgR6tevnywWi2PMnDlzVL9+faWlpenbb7+Vn5+fIiIi9OSTT7piWwAAAAAAAAAAwI0Y7Ha73dUhrldRUVFq3bq1lixZ4pLnW61Wmc1mWSwWThABAAAAAAAAAODmKlI34ATRDaDL9NflafRxdQxlL4x1dQQAAAAAAAAAAFAOHq4OAAAAAAAAAAAAgGuLAtFVKisr0+TJk1WnTh01bNhQKSkpjnvPPPOMWrVqpZo1ayogIECPPfaYSkpKHPe/++479enTR7Vr11bNmjV16623avPmzS7YBQAAAAAAAAAAcCe8Yu4qrVmzRhMmTNDu3bv18ccfKy4uTh07dtRdd90lDw8PPffcc2ratKm+/fZbPfbYY5o8ebJeeOEFSdLjjz+uM2fOaMeOHapZs6YOHDggX1/fiz7LZrPJZrM5rq1Wa5XvDwAAAAAAAAAA3HgMdrvd7uoQ16uoqCiVlpZq586djr527dqpe/fumj9//nnj33rrLY0ZM0a//PKLJCksLEwPPPCAZs2aVa7npaSkKDU19bz+8LEr+AYRAAAAAAAAAABuzmq1ymw2y2KxyGQyXXIsr5i7SmFhYU7X/v7+Ki4uliR98MEH6tGjh2666SbVqlVLQ4cO1bFjx3T69GlJ0rhx4zR37lx17NhRs2bN0v79+y/5rOTkZFksFkcrLCysmk0BAAAAAAAAAIAbGgWiq+Tt7e10bTAYVFZWpvz8fN13330KCwvT22+/rezsbP3lL3+RJJ05c0aSFB8fr2+//VZDhw7V559/rsjISD3//PMXfZbRaJTJZHJqAAAAAAAAAAAAFUWBqIpkZ2errKxMixcv1p133qng4GAdPXr0vHEBAQEaM2aM3nnnHU2cOFErV650QVoAAAAAAAAAAOBOvFwd4EbVvHlznT17Vs8//7z69OmjrKwsrVixwmlMYmKi7rnnHgUHB+vEiRP68MMPFRoa6qLEAAAAAAAAAADAXVAgqiLh4eF65pln9PTTTys5OVldunRRWlqaYmNjHWNKS0v1+OOP6/vvv5fJZFJ0dLSeffbZCj9rx9wYXjcHAAAAAAAAAADKzWC32+2uDoErY7VaZTabZbFYKBABAAAAAAAAAODmKlI34ATRDaDL9NflafRxdQxlL4y9/CAAAAAAAAAAAOByHq4OAAAAAAAAAAAAgGuLAhEAAAAAAAAAAICboUB0hWw2m8aNG6c//elPql69ujp16qQ9e/ZIkjIyMmQwGLR9+3ZFRkaqRo0a6tChgw4dOuS0xrvvvquIiAhVr15dt9xyi1JTU3Xu3DlXbAcAAAAAAAAAALgRCkRXaPLkyXr77be1Zs0affbZZ2revLl69eql48ePO8ZMmzZNixcv1t69e+Xl5aURI0Y47u3cuVOxsbF64okndODAAb344otKT0/XU089ddFn2mw2Wa1WpwYAAAAAAAAAAFBRBrvdbnd1iOvNqVOnVLt2baWnp2vQoEGSpLNnzyowMFCJiYlq27atunXrpg8++EA9evSQJG3evFm9e/fWb7/9purVq6tnz57q0aOHkpOTHev+9a9/1eTJk3X06NELPjclJUWpqann9YePXSFPo08V7LRishfGujoCAAAAAAAAAABuy2q1ymw2y2KxyGQyXXIsJ4iuQF5ens6ePauOHTs6+ry9vdWuXTsdPHjQ0RcWFub47e/vL0kqLi6WJOXm5mr27Nny9fV1tFGjRqmoqEinT5++4HOTk5NlsVgcrbCwsCq2BwAAAAAAAAAAbnBerg5wI/P29nb8NhgMkqSysjJJUklJiVJTU9W/f//z5lWvXv2C6xmNRhmNxipICgAAAAAAAAAA3AkFoivQrFkzVatWTVlZWWrSpImk318xt2fPHiUmJpZrjYiICB06dEjNmzevwqQAAAAAAAAAAADno0B0BWrWrKlHH31UkyZNUp06ddS4cWMtWLBAp0+f1siRI5Wbm3vZNWbOnKn77rtPjRs31oMPPigPDw/l5ubqiy++0Ny5cyuUZ8fcmMu+SxAAAAAAAAAAAOAPFIiu0Pz581VWVqahQ4fq119/VWRkpLZt26batWuXa36vXr20ceNGzZ49W08//bS8vb3VokULxcfHV3FyAAAAAAAAAADg7gx2u93u6hDXs/T0dCUmJurkyZPX/NlWq1Vms1kWi4UTRAAAAAAAAAAAuLmK1A04QfQ/wmAwaP369erbt2+F53aZ/ro8jT6VH6qCshfGujoCAAAAAAAAAAAoBw9XBwAAAAAAAAAAAMC1RYHoAjZu3Cg/Pz+VlpZKknJycmQwGDR16lTHmPj4eA0ZMsRxvW3bNoWGhsrX11fR0dEqKipy3NuzZ4/uuusu1atXT2azWV27dtVnn33muB8YGChJ6tevnwwGg+MaAAAAAAAAAACgKlAguoDOnTvr119/1b59+yRJmZmZqlevnjIyMhxjMjMzFRUVJUk6ffq0Fi1apFdffVU7duxQQUGBkpKSHGN//fVXDRs2TLt27dInn3yioKAg3Xvvvfr1118l/V5AkqTVq1erqKjIcf3fbDabrFarUwMAAAAAAAAAAKgoCkQXYDab1bp1a0dBKCMjQ+PHj9e+fftUUlKiH374Qd988426du0qSTp79qxWrFihyMhIRUREKCEhQdu3b3es1717dw0ZMkQtWrRQaGioXnrpJZ0+fVqZmZmSpPr160uS/Pz81LBhQ8f1f0tLS5PZbHa0gICAKvwrAAAAAAAAAACAGxUFoovo2rWrMjIyZLfbtXPnTvXv31+hoaHatWuXMjMz1ahRIwUFBUmSatSooWbNmjnm+vv7q7i42HH9008/adSoUQoKCpLZbJbJZFJJSYkKCgoqlCk5OVkWi8XRCgsLK2ezAAAAAAAAAADArXi5OsD/qqioKL3yyivKzc2Vt7e3WrRooaioKGVkZOjEiROO00OS5O3t7TTXYDDIbrc7rocNG6Zjx45p6dKlatKkiYxGo9q3b68zZ85UKJPRaJTRaLy6jQEAAAAAAAAAALfHCaKL+OM7RM8++6yjGPRHgSgjI8Px/aHyyMrK0rhx43Tvvffq1ltvldFo1C+//OI0xtvbW6WlpZW5BQAAAAAAAAAAgAuiQHQRtWvXVlhYmNatW+coBnXp0kWfffaZvv76a6cTRJcTFBSkV199VQcPHtTu3bs1ePBg+fj4OI0JDAzU9u3b9eOPP+rEiROVuRUAAAAAAAAAAAAnvGLuErp27aqcnBxHgahOnTpq2bKlfvrpJ4WEhJR7nVWrVmn06NGKiIhQQECA5s2bp6SkJKcxixcv1oQJE7Ry5UrddNNNys/PL/f6O+bGyGQylXs8AAAAAAAAAABwbwb7f34sB9cVq9Uqs9ksi8VCgQgAAAAAAAAAADdXkboBJ4iuQHp6uhITE3Xy5ElXR5EkdZn+ujyNPpcfWMWyF8a6OgIAAAAAAAAAACgHvkEEAAAAAAAAAADgZigQAQAAAAAAAAAAuBkKRP9n48aN8vPzU2lpqSQpJydHBoNBU6dOdYyJj4/XkCFDHNfbtm1TaGiofH19FR0draKiIqc1X375ZYWGhqp69epq0aKFXnjhBce9/Px8GQwGvfPOO+rWrZtq1Kih8PBwffzxx1W8UwAAAAAAAAAA4O4oEP2fzp0769dff9W+ffskSZmZmapXr54yMjIcYzIzMxUVFSVJOn36tBYtWqRXX31VO3bsUEFBgZKSkhxj161bp5kzZ+qpp57SwYMHNW/ePM2YMUNr1qxxeu60adOUlJSknJwcBQcHKyYmRufOnbtgRpvNJqvV6tQAAAAAAAAAAAAqigLR/zGbzWrdurWjIJSRkaHx48dr3759Kikp0Q8//KBvvvlGXbt2lSSdPXtWK1asUGRkpCIiIpSQkKDt27c71ps1a5YWL16s/v37q2nTpurfv7/Gjx+vF1980em5SUlJ6t27t4KDg5WamqrvvvtO33zzzQUzpqWlyWw2O1pAQEDV/DEAAAAAAAAAAMANjQLRf+jatasyMjJkt9u1c+dO9e/fX6Ghodq1a5cyMzPVqFEjBQUFSZJq1KihZs2aOeb6+/uruLhYknTq1Cnl5eVp5MiR8vX1dbS5c+cqLy/P6ZlhYWFOa0hyrPPfkpOTZbFYHK2wsLBS9w8AAAAAAAAAANyDl6sD/C+JiorSK6+8otzcXHl7e6tFixaKiopSRkaGTpw44Tg9JEne3t5Ocw0Gg+x2uySppKREkrRy5UrdcccdTuM8PT2drv9zHYPBIEkqKyu7YD6j0Sij0XiFuwMAAAAAAAAAAPgdBaL/8Md3iJ599llHMSgqKkrz58/XiRMnNHHixHKt06BBAzVq1EjffvutBg8eXJWRAQAAAAAAAAAAKowC0X+oXbu2wsLCtG7dOi1btkyS1KVLFz300EM6e/as0wmiy0lNTdW4ceNkNpsVHR0tm82mvXv36sSJE5owYUKl5t4xN0Ymk6lS1wQAAAAAAAAAADcuvkH0X7p27arS0lJFRUVJkurUqaOWLVuqYcOGCgkJKfc68fHxevnll7V69Wq1atVKXbt2VXp6upo2bVpFyQEAAAAAAAAAAMrHYP/jwzm47litVpnNZlksFk4QAQAAAAAAAADg5ipSN3DpK+bsdrseeeQRvfXWWzpx4oTMZrPi4uK0ZMkSV8a67nSZ/ro8jT6ujqHshbGujgAAAAAAAAAAAMrBpQWirVu3Kj09XRkZGbrlllvk4eEhHx/XFzqutZSUFG3YsEE5OTmujgIAAAAAAAAAANyASwtEeXl58vf3V4cOHco1/syZM6pWrVoVpwIAAAAAAAAAALixebjqwXFxcRo7dqwKCgpkMBgUGBioqKgoJSYmOsYEBgZqzpw5io2Nlclk0ujRo5Weni4/Pz9t3LhRISEhqlGjhh588EGdPn1aa9asUWBgoGrXrq1x48aptLTUsdarr76qyMhI1apVSw0bNtSgQYNUXFzsuJ+RkSGDwaBt27apTZs28vHxUffu3VVcXKwtW7YoNDRUJpNJgwYN0unTpx3zysrKlJaWpqZNm8rHx0fh4eF66623zlt3+/btioyMVI0aNdShQwcdOnTo/7V3/0FV1fkfx1+XX1eQHwopP1YJdB0BU8NQ13QX/LFh67hr5moOGv7Ymk1sBXVDt6HaNUVNN3/QiDbbOjpau86Wu2npqiGm6w8EYSIV0zQcQxhTQDCR5Z7vH988szepoJRz9T4fM3eG8/l87ue8z3VepbznnCtJWr9+vf74xz+qpKRENptNNptN69evb/Yza2hoUG1trdMLAAAAAAAAAACgtSxrEK1cuVJ/+tOf1KVLF1VUVKigoKDZdcuWLVPfvn117NgxZWVlSZKuXbumVatW6a233tKOHTu0d+9ePfbYY3rvvff03nvvaePGjVq7dq1To6axsVELFixQSUmJtm7dqnPnzmnKlCm3nO+ll15STk6O/vOf/+j8+fMaP368VqxYoc2bN2v79u3697//rdWrV5vrs7OztWHDBuXm5urjjz9WRkaGJk2apPz8fKd9n3/+eS1fvlxHjx6Vl5eXpk2bJkmaMGGC5syZo169eqmiokIVFRWaMGFCs59Fdna2goKCzFfXrl1b9ZkDAAAAAAAAAABIFj5iLigoSAEBAfL09FRYWNg3rhs2bJjmzJljHn/44YdqbGzUmjVr1L17d0nSuHHjtHHjRlVWVsrf319xcXEaOnSo8vLyzGbLzYaMJHXr1k2rVq1S//79VVdXJ39/f3Pu5Zdf1uDBgyVJ06dP1/z583XmzBl169bNPFdeXp4yMzPV0NCgRYsWaffu3Ro0aJC59/79+7V27VolJiaa+y5cuNA8njdvnkaNGqXr16/L19dX/v7+8vLy+tbPQZLmz5+v2bNnm8e1tbU0iQAAAAAAAAAAQKtZ+h1ELZGQkHDLmJ+fn9kckqTQ0FBFRUU5NXpCQ0OdHiFXWFiol156SSUlJbpy5YocDockqby8XHFxcea6Pn36OO3h5+dnNodujh05ckSSdPr0aV27dk0///nPneq7ceOG4uPjncb+d9/w8HBJUlVVlSIjI1vwKfw/u90uu93e4vUAAAAAAAAAAADNcfkGUfv27W8Z8/b2djq22WzNjt1sAtXX1ys5OVnJycnatGmTOnXqpPLyciUnJ+vGjRvfuPd37VtXVydJ2r59u370ox85rft6I+fr+0oy9wEAAAAAAAAAAGhLLt8guh1OnjypL774QosXLzYfyXb06NEfvG9cXJzsdrvKy8udHifXWj4+PmpqavrB9QAAAAAAAAAAALSEWzSIIiMj5ePjo9WrV+u3v/2tSktLtWDBgh+8b0BAgObOnauMjAw5HA4NGTJENTU1OnDggAIDA5WamtqifaKionT27FkVFxerS5cuCggIaNWj5Pa9PFGBgYHf9zIAAAAAAAAAAICb8bC6gLbQqVMnrV+/Xlu2bFFcXJwWL16sZcuW3Za9FyxYoKysLGVnZys2NlYjR47U9u3bFR0d3eI9Hn/8cY0cOVJDhw5Vp06d9Oabb96W2gAAAAAAAAAAAJpjMwzDsLqIu8n69euVnp6u6urqb1wzZcoUVVdXa+vWrXe0ltraWgUFBanvs7nytPve0XO1ROErT1pdAgAAAAAAAAAAbutm36CmpuY7nzzmFo+Ya2srV67U//bdkpKS9OCDD2rFihXWFQUAAAAAAAAAAPAVGkR3QFBQkNUlAAAAAAAAAAAAfCO3+A6i77Jt2zZ16NBBTU1NkqTi4mLZbDbNmzfPXPOb3/xGkyZNMo937typ2NhY+fv7a+TIkaqoqDDnpkyZojFjxpg/5+fna+XKlbLZbLLZbDp37pwkqbS0VI8++qj8/f0VGhqqyZMn69KlS3f+ggEAAAAAAAAAgFujQSTppz/9qa5evapjx45JkvLz83Xfffdp79695pr8/HwlJSVJkq5du6Zly5Zp48aN2rdvn8rLyzV37txm9165cqUGDRqkp556ShUVFaqoqFDXrl1VXV2tYcOGKT4+XkePHtWOHTtUWVmp8ePHf2OdDQ0Nqq2tdXoBAAAAAAAAAAC0Fg0i/f8j4R588EGzIbR3715lZGTo2LFjqqur04ULF3T69GklJiZKkhobG5Wbm6uEhAT169dPM2fO1J49e75xbx8fH/n5+SksLExhYWHy9PRUTk6O4uPjtWjRIsXExCg+Pl5vvPGG8vLydOrUqWb3ys7OVlBQkPnq2rXrHfk8AAAAAAAAAADAvY0G0VcSExO1d+9eGYahDz/8UGPHjlVsbKz279+v/Px8RUREqEePHpIkPz8/de/e3XxveHi4qqqqWnW+kpIS5eXlyd/f33zFxMRIks6cOdPse+bPn6+amhrzdf78+e95tQAAAAAAAAAAwJ15WV2Aq0hKStIbb7yhkpISeXt7KyYmRklJSdq7d6+uXLli3j0kSd7e3k7vtdlsMgyjVeerq6vT6NGjtWTJklvmwsPDm32P3W6X3W5v1XkAAAAAAAAAAAC+jgbRV25+D9Grr75qNoOSkpK0ePFiXblyRXPmzPnee/v4+KipqclprF+/fvrHP/6hqKgoeXnxxwAAAAAAAAAAANoOj5j7SseOHdWnTx9t2rRJSUlJkqSf/exnKioq0qlTp5zuIGqtqKgoHT58WOfOndOlS5fkcDiUlpamy5cva+LEiSooKNCZM2e0c+dOTZ069ZZmEgAAAAAAAAAAwO3ErSv/IzExUcXFxWaDKDg4WHFxcaqsrFTPnj2/975z585Vamqq4uLi9OWXX+rs2bOKiorSgQMHlJmZqUceeUQNDQ26//77NXLkSHl4tKxvd/OxdtueG6XAwMDvXd/tUltba3UJAAAAAAAAAAC4rZu/p2/J1+LYjNZ+eQ5cxqeffqru3btbXQYAAAAAAAAAAHAh58+fV5cuXb51DXcQ3cWCg4MlSeXl5QoKCrK4GgD/q7a2Vl27dtX58+dd4g4/AM7IKOC6yCfg2sgo4LrIJ+DayCjaimEYunr1qiIiIr5zLQ2iu9jNR9EFBQXxHxXARQUGBpJPwIWRUcB1kU/AtZFRwHWRT8C1kVG0hZbeUNKyL7sBAAAAAAAAAADAPYMGEQAAAAAAAAAAgJuhQXQXs9vtevHFF2W3260uBcDXkE/AtZFRwHWRT8C1kVHAdZFPwLWRUbgim2EYhtVFAAAAAAAAAAAAoO1wBxEAAAAAAAAAAICboUEEAAAAAAAAAADgZmgQAQAAAAAAAAAAuBkaRAAAAAAAAAAAAG6GBtFd7LXXXlNUVJTatWungQMH6siRI1aXBLid7Oxs9e/fXwEBAercubPGjBmjsrIypzXXr19XWlqaQkJC5O/vr8cff1yVlZUWVQy4r8WLF8tmsyk9Pd0cI5+AtS5cuKBJkyYpJCREvr6+6t27t44ePWrOG4ahF154QeHh4fL19dWIESP0ySefWFgx4B6ampqUlZWl6Oho+fr6qnv37lqwYIEMwzDXkE+g7ezbt0+jR49WRESEbDabtm7d6jTfkjxevnxZKSkpCgwMVIcOHTR9+nTV1dW14VUA96Zvy2djY6MyMzPVu3dvtW/fXhEREXryySf1+eefO+1BPmElGkR3qb/97W+aPXu2XnzxRRUVFalv375KTk5WVVWV1aUBbiU/P19paWk6dOiQdu3apcbGRj3yyCOqr68312RkZOjdd9/Vli1blJ+fr88//1xjx461sGrA/RQUFGjt2rXq06eP0zj5BKxz5coVDR48WN7e3nr//fd1/PhxLV++XB07djTXLF26VKtWrVJubq4OHz6s9u3bKzk5WdevX7ewcuDet2TJEq1Zs0Y5OTk6ceKElixZoqVLl2r16tXmGvIJtJ36+nr17dtXr732WrPzLcljSkqKPv74Y+3atUvbtm3Tvn379PTTT7fVJQD3rG/L57Vr11RUVKSsrCwVFRXp7bffVllZmX75y186rSOfsJSBu9KAAQOMtLQ087ipqcmIiIgwsrOzLawKQFVVlSHJyM/PNwzDMKqrqw1vb29jy5Yt5poTJ04YkoyDBw9aVSbgVq5evWr06NHD2LVrl5GYmGjMmjXLMAzyCVgtMzPTGDJkyDfOOxwOIywszHjllVfMserqasNutxtvvvlmW5QIuK1Ro0YZ06ZNcxobO3askZKSYhgG+QSsJMl45513zOOW5PH48eOGJKOgoMBc8/777xs2m824cOFCm9UO3Ou+ns/mHDlyxJBkfPbZZ4ZhkE9YjzuI7kI3btxQYWGhRowYYY55eHhoxIgROnjwoIWVAaipqZEkBQcHS5IKCwvV2NjolNeYmBhFRkaSV6CNpKWladSoUU45lMgnYLV//etfSkhI0K9//Wt17txZ8fHxev311835s2fP6uLFi04ZDQoK0sCBA8kocIc9/PDD2rNnj06dOiVJKikp0f79+/Xoo49KIp+AK2lJHg8ePKgOHTooISHBXDNixAh5eHjo8OHDbV4z4M5qampks9nUoUMHSeQT1vOyugC03qVLl9TU1KTQ0FCn8dDQUJ08edKiqgA4HA6lp6dr8ODBeuCBByRJFy9elI+Pj/k//ptCQ0N18eJFC6oE3Mtbb72loqIiFRQU3DJHPgFrffrpp1qzZo1mz56tP/zhDyooKNDvfvc7+fj4KDU11cxhc3/nJaPAnTVv3jzV1tYqJiZGnp6eampq0sKFC5WSkiJJ5BNwIS3J48WLF9W5c2eneS8vLwUHB5NZoA1dv35dmZmZmjhxogIDAyWRT1iPBhEA3CZpaWkqLS3V/v37rS4FgKTz589r1qxZ2rVrl9q1a2d1OQC+xuFwKCEhQYsWLZIkxcfHq7S0VLm5uUpNTbW4OsC9/f3vf9emTZu0efNm9erVS8XFxUpPT1dERAT5BADge2hsbNT48eNlGIbWrFljdTmAiUfM3YXuu+8+eXp6qrKy0mm8srJSYWFhFlUFuLeZM2dq27ZtysvLU5cuXczxsLAw3bhxQ9XV1U7ryStw5xUWFqqqqkr9+vWTl5eXvLy8lJ+fr1WrVsnLy0uhoaHkE7BQeHi44uLinMZiY2NVXl4uSWYO+Tsv0PZ+//vfa968eXriiSfUu3dvTZ48WRkZGcrOzpZEPgFX0pI8hoWFqaqqymn+v//9ry5fvkxmgTZwszn02WefadeuXebdQxL5hPVoEN2FfHx89NBDD2nPnj3mmMPh0J49ezRo0CALKwPcj2EYmjlzpt555x198MEHio6Odpp/6KGH5O3t7ZTXsrIylZeXk1fgDhs+fLg++ugjFRcXm6+EhASlpKSYP5NPwDqDBw9WWVmZ09ipU6d0//33S5Kio6MVFhbmlNHa2lodPnyYjAJ32LVr1+Th4fzrAk9PTzkcDknkE3AlLcnjoEGDVF1drcLCQnPNBx98IIfDoYEDB7Z5zYA7udkc+uSTT7R7926FhIQ4zZNPWI1HzN2lZs+erdTUVCUkJGjAgAFasWKF6uvrNXXqVKtLA9xKWlqaNm/erH/+858KCAgwnw8bFBQkX19fBQUFafr06Zo9e7aCg4MVGBioZ599VoMGDdJPfvITi6sH7m0BAQHm94Hd1L59e4WEhJjj5BOwTkZGhh5++GEtWrRI48eP15EjR7Ru3TqtW7dOkmSz2ZSenq6XX35ZPXr0UHR0tLKyshQREaExY8ZYWzxwjxs9erQWLlyoyMhI9erVS8eOHdOf//xnTZs2TRL5BNpaXV2dTp8+bR6fPXtWxcXFCg4OVmRk5HfmMTY2ViNHjtRTTz2l3NxcNTY2aubMmXriiScUERFh0VUB94Zvy2d4eLjGjRunoqIibdu2TU1NTebvjYKDg+Xj40M+YT0Dd63Vq1cbkZGRho+PjzFgwADj0KFDVpcEuB1Jzb7++te/mmu+/PJLY8aMGUbHjh0NPz8/47HHHjMqKiqsKxpwY4mJicasWbPMY/IJWOvdd981HnjgAcNutxsxMTHGunXrnOYdDoeRlZVlhIaGGna73Rg+fLhRVlZmUbWA+6itrTVmzZplREZGGu3atTO6detmPP/880ZDQ4O5hnwCbScvL6/Zf3empqYahtGyPH7xxRfGxIkTDX9/fyMwMNCYOnWqcfXqVQuuBri3fFs+z549+42/N8rLyzP3IJ+wks0wDKMtG1IAAAAAAAAAAACwFt9BBAAAAAAAAAAA4GZoEAEAAAAAAAAAALgZGkQAAAAAAAAAAABuhgYRAAAAAAAAAACAm6FBBAAAAAAAAAAA4GZoEAEAAAAAAAAAALgZGkQAAAAAAAAAAABuhgYRAAAAAAAAAACAm6FBBAAAAAAAAAAA4GZoEAEAAACAGzt37pxsNpuKi4utLgUAAABAG6JBBAAAAAAAAAAA4GZoEAEAAACAhRwOh5YuXaof//jHstvtioyM1MKFCyVJH330kYYNGyZfX1+FhITo6aefVl1dnfnepKQkpaenO+03ZswYTZkyxTyOiorSokWLNG3aNAUEBCgyMlLr1q0z56OjoyVJ8fHxstlsSkpKumPXCgAAAMB10CACAAAAAAvNnz9fixcvVlZWlo4fP67NmzcrNDRU9fX1Sk5OVseOHVVQUKAtW7Zo9+7dmjlzZqvPsXz5ciUkJOjYsWOaMWOGnnnmGZWVlUmSjhw5IknavXu3Kioq9Pbbb9/W6wMAAADgmrysLgAAAAAA3NXVq1e1cuVK5eTkKDU1VZLUvXt3DRkyRK+//rquX7+uDRs2qH379pKknJwcjR49WkuWLFFoaGiLz/OLX/xCM2bMkCRlZmbq1VdfVV5ennr27KlOnTpJkkJCQhQWFnabrxAAAACAq+IOIgAAAACwyIkTJ9TQ0KDhw4c3O9e3b1+zOSRJgwcPlsPhMO/+aak+ffqYP9tsNoWFhamqqur7Fw4AAADgrkeDCAAAAAAs4uvr+4Pe7+HhIcMwnMYaGxtvWeft7e10bLPZ5HA4ftC5AQAAANzdaBABAAAAgEV69OghX19f7dmz55a52NhYlZSUqL6+3hw7cOCAPDw81LNnT0lSp06dVFFRYc43NTWptLS0VTX4+PiY7wUAAADgPmgQAQAAAIBF2rVrp8zMTD333HPasGGDzpw5o0OHDukvf/mLUlJS1K5dO6Wmpqq0tFR5eXl69tlnNXnyZPP7h4YNG6bt27dr+/btOnnypJ555hlVV1e3qobOnTvL19dXO3bsUGVlpWpqau7AlQIAAABwNTSIAAAAAMBCWVlZmjNnjl544QXFxsZqwoQJqqqqkp+fn3bu3KnLly+rf//+GjdunIYPH66cnBzzvdOmTVNqaqqefPJJJSYmqlu3bho6dGirzu/l5aVVq1Zp7dq1ioiI0K9+9avbfYkAAAAAXJDN+PoDqwEAAAAAAAAAAHBP4w4iAAAAAAAAAAAAN0ODCAAAAAAAAAAAwM3QIAIAAAAAAAAAAHAzNIgAAAAAAAAAAADcDA0iAAAAAAAAAAAAN0ODCAAAAAAAAAAAwM3QIAIAAAAAAAAAAHAzNIgAAAAAAAAAAADcDA0iAAAAAAAAAAAAN0ODCAAAAAAAAAAAwM3QIAIAAAAAAAAAAHAz/wfSpEaooT1BzwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "# Make the plot and customize how it is displayed\n", - "plt.figure(figsize= (20, 15))\n", - "fig = sns.barplot(data = top_words_df, x = \"count\", y = \"token\")\n", + "plt.figure(figsize=(20, 15))\n", + "fig = sns.barplot(data=top_words_df, x=\"count\", y=\"token\")\n", "fig.set_title(\"Top 100 Most Frequent Words in a Subset of Project Gutenberg Texts\")" ] } ], "metadata": { - "interpreter": { - "hash": "8db04dca66b9396af2474eca4189d3a8ab65d348a7a173a34f354ffe25d5d9d4" - }, "kernelspec": { - "display_name": "Python 3.10.4 ('template')", + "display_name": "template", "language": "python", "name": "python3" }, @@ -363,7 +358,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.10.13" }, "orig_nbformat": 4 }, diff --git a/pyproject.toml b/pyproject.toml index 1d8a32b..e7bc5e6 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -32,7 +32,8 @@ dependencies = [ # Extra dependencies only needed for running tests go here test = ["pytest"] -# Dependencies that are useful only to developers, like an autoformatter and support for visualizations in jupyter notebooks go here +# Dependencies that are useful only to developers, like an autoformatter and +# support for visualizations in jupyter notebooks go here dev = [ "ruff", "jupyter", @@ -45,3 +46,8 @@ dev = [ # The value must be of the form ":." [project.scripts] corpus-counter = "cdstemplate:corpus_counter_script.main_cli" + +# Add customizations to the Ruff linter as described on https://docs.astral.sh/ruff/configuration/ +[tool.ruff] +# Override ruff's default so that lines aren't more than 120 characters +line-length = 119 diff --git a/src/cdstemplate/corpus_counter_script.py b/src/cdstemplate/corpus_counter_script.py index 404550d..f0f3ae7 100644 --- a/src/cdstemplate/corpus_counter_script.py +++ b/src/cdstemplate/corpus_counter_script.py @@ -1,6 +1,7 @@ """An example of a script you can run. It tokenizes an folder of input documents and writes the corpus counts to a user-specified CSV file """ + # Import modules, functions and classes from external libraries import argparse import logging @@ -11,19 +12,16 @@ logger = logging.getLogger(__name__) + def main_cli(): - """A wrapper function that defines command line arguments and help messages for - when the user wants run this module's code as a script. + """A wrapper function that defines command line arguments and help messages for + when the user wants run this module's code as a script. """ # The argument parser gives nice ways to include help message and specify which arguments # are required or optional, see https://docs.python.org/3/library/argparse.html#prog for usage instructions - parser = argparse.ArgumentParser( - description="A script to generate counts of tokens in a corpus" - ) + parser = argparse.ArgumentParser(description="A script to generate counts of tokens in a corpus") - parser.add_argument( - "csv", help="Path to the output CSV storing token counts. Required." - ) + parser.add_argument("csv", help="Path to the output CSV storing token counts. Required.") parser.add_argument( "documents", @@ -64,5 +62,5 @@ def main(csv_out, documents, case_insensitive=False): # The entry point of your script - if a user runs it from the command line, for example using `python -m .` # or `python .py`, this is what will be run. -if __name__ == "__main__": +if __name__ == "__main__": main_cli() diff --git a/src/cdstemplate/utils.py b/src/cdstemplate/utils.py index 320e122..79fa1a0 100644 --- a/src/cdstemplate/utils.py +++ b/src/cdstemplate/utils.py @@ -1,11 +1,10 @@ -"""A module for important set-up and configuration functionality, but doesn't implement the library's key features. -""" +"""A module for important set-up and configuration functionality, but doesn't implement the library's key features.""" + import logging def configure_logging(): - """A helper method that configures logging, usable by any script in this library. - """ + """A helper method that configures logging, usable by any script in this library.""" logging.basicConfig( level=logging.DEBUG, format="%(levelname)s : %(asctime)s : %(name)s : %(message)s", diff --git a/src/cdstemplate/word_count.py b/src/cdstemplate/word_count.py index 8037dce..ce2e561 100644 --- a/src/cdstemplate/word_count.py +++ b/src/cdstemplate/word_count.py @@ -1,6 +1,7 @@ """An example of an module with functions and a class that can be imported once the package is installed. This module provides operations for tokenization and tracking cumulative word counts in a set of documents. """ + from collections import Counter import logging import re @@ -29,8 +30,7 @@ def tokenize(text, pattern=r"\s"): class CorpusCounter: - """A simple class object that tracks document and token counts in a corpus. - """ + """A simple class object that tracks document and token counts in a corpus.""" def __init__(self, tokenization_pattern=r"\s", case_insensitive=False): """Constructor instantiates with empty counters @@ -89,16 +89,12 @@ def get_token_count(self, token): return self.token_counter[token] def get_vocab_size(self): - """Returns vocabulary size (number of unique tokens) - """ + """Returns vocabulary size (number of unique tokens)""" return len(self.token_counter) def get_token_counts_as_dataframe(self): - """Returns the token counts of the corpus as a Pandas DataFrame with columns 'token', 'count' - """ - dataframe = pd.DataFrame.from_records( - list(self.token_counter.items()), columns=["token", "count"] - ) + """Returns the token counts of the corpus as a Pandas DataFrame with columns 'token', 'count'""" + dataframe = pd.DataFrame.from_records(list(self.token_counter.items()), columns=["token", "count"]) dataframe = dataframe.sort_values("token") return dataframe @@ -111,4 +107,3 @@ def save_token_counts(self, csv_file): """ logger.info("Saving token counts to %s", csv_file) self.get_token_counts_as_dataframe().to_csv(csv_file, index=False, header=True) - diff --git a/tests/test_word_count.py b/tests/test_word_count.py index aa91336..ae80dd0 100644 --- a/tests/test_word_count.py +++ b/tests/test_word_count.py @@ -2,12 +2,15 @@ In pytest, each individual test is a python function that starts with `test`. """ + # Import your library for testing from cdstemplate import word_count def test_tokenize_document(): - my_document = "It was all very well to say `Drink me,' but the wise little Alice was not going to do that in a hurry." + my_document = ( + "It was all very well to say `Drink me,' but the wise little Alice was not going to do that in a hurry." + ) expected_tokens = [ "It",