Skip to content

DRY_RUN mode's performance #14

@Lukas-Ma1

Description

@Lukas-Ma1

I would like to ask about coco training and test performance on DRY_RUN mode. I use DRY_RUN on each command you mentioned, including extract globals, objects and blocks features. When I run:
DRY_RUN=True TRAIN_WITH_VAL_DATASET=True torchrun --nproc_per_node=4 -m oadp.dp.train oadp_ov_coco configs/dp/oadp_ov_coco.py --override .validator.dataloader.dataset.ann_file::data/coco/annotations/instances_val2017.48.json

The DP training for coco, the result be like:

2023-11-11 23:43:33,261 - mmdet - INFO - Iter(val) [1] COCO_48_17_bbox_mAP_: 0.8614, COCO_48_17_bbox_mAP_50: 0.8614, COCO_48_17_bbox_mAP_75: 0.8614, COCO_48_17_bbox_mAP_s: 0.7921, COCO_48_17_bbox_mAP_m: 1.0000, COCO_48_17_bbox_mAP_l: 1.0000, COCO_48_17_bbox_mAP_copypaste: 0.8614 0.8614 0.8614 0.7921 1.0000 1.0000, COCO_48_bbox_mAP_: 0.8614, COCO_48_bbox_mAP_50: 0.8614, COCO_48_bbox_mAP_75: 0.8614, COCO_48_bbox_mAP_s: 0.7921, COCO_48_bbox_mAP_m: 1.0000, COCO_48_bbox_mAP_l: 1.0000, COCO_48_bbox_mAP_copypaste: 0.8614 0.8614 0.8614 0.7921 1.0000 1.0000, COCO_17_bbox_mAP_: -1.0000, COCO_17_bbox_mAP_50: -1.0000, COCO_17_bbox_mAP_75: -1.0000, COCO_17_bbox_mAP_s: -1.0000, COCO_17_bbox_mAP_m: -1.0000, COCO_17_bbox_mAP_l: -1.0000, COCO_17_bbox_mAP_copypaste: -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
2023-11-11 23:43:33,606 - mmdet - INFO - Saving checkpoint at 40000 iterations
2023-11-11 23:43:35,052 - mmdet - INFO - Iter [40000/40000.0] lr: 2.000e-03, eta: 0:00:00, time: 4.103, data_time: 2.348, memory: 2148, loss_rpn_cls: 0.0000, loss_rpn_bbox: 0.0011, loss_cls: 0.0021, acc: 99.9512, loss_bbox: 0.0073, loss_global: 0.0002, recall_global: 69.3125, loss_block: 0.0016, recall_block: 11.1172, loss_clip_objects: 0.6160, loss_clip_global: 0.2377, loss_clip_blocks: 0.5239, loss_clip_block_relations: 0.0503, loss: 1.4403

I got a ridiculous result: 0.8614 mAP, there must be something wrong, but I check my process, data structure and commands, all these are following your steps. So is DRY_RUN makes this unreal result and I should turn to run without DRY_RUN?(By the way, extract globals, objects and blocks features on DRY_RUN seems to be smaller than without DRY_RUN's, so I should download from Baidu disk?)

Thanks for your attention and impressive work!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions